凹凸贴图和法线贴图的区别

news2024/12/24 3:36:02

1、什么是凹凸贴图

  凹凸贴图(bump mapping)是一种计算机图形学中的渲染技术,用于在给定的表面上模拟微小的凹凸纹理。通过在表面法线方向上微调每个像素的光照值,可以给平滑的表面增加视觉上的凹凸感。

  在凹凸贴图中,每个像素点都包含了一个法线向量,表示该点表面的方向。这些法线向量通常以纹理的形式存储在一个称为凹凸贴图的二维图像中。渲染过程中,根据法线向量的信息,调整每个像素的光照计算结果,使得光线在表面上的反射看起来产生微小的凹凸效果。

  凹凸贴图可以用于增加物体的细节和真实感,例如在石头、皮肤、织物等表面上模拟出凹陷和凸起的纹理效果。这种技术可以通过在三维建模软件中创建凹凸贴图,或者通过在渲染过程中动态生成凹凸贴图来实现。

  需要注意的是,凹凸贴图只是一种视觉上的效果,不改变实际的物体几何形状。它是一种节约计算资源的技术,能够在不增加多边形数量的情况下,为平滑的表面增添细节。

2、什么是法线贴图

  法线贴图(normal mapping)是一种计算机图形学中的贴图技术,用于在平坦表面上模拟出凹凸纹理的效果。通过为每个像素点提供一个法线向量,法线贴图可以使得渲染的物体表面看起来具有细致的凹凸感。

  在法线贴图中,每个像素点都包含了一个法线向量,代表着该点表面的方向。这些法线向量通常以纹理的形式存储在一个称为法线贴图的二维图像中。渲染过程中,根据法线贴图中的法线信息,调整每个像素的光照计算结果,使得表面的法线向量发生变化,从而呈现出凹凸的纹理效果。

  与凹凸贴图相比,法线贴图能够提供更加精细和真实的凹凸效果。它可以用于模拟各种材质的凹凸纹理,例如石头、木材、金属等。法线贴图通常由专业的三维建模软件生成,并与模型的纹理贴图一起使用。

  需要注意的是,法线贴图只是一种视觉上的效果,不改变实际的物体几何形状。它是一种在渲染过程中模拟细节的技术,可以增强物体的真实感和细节感。

3、凹凸贴图和法线贴图效果展示

  下面我将使用GLTF编辑器来展示凹凸贴图和发现贴图有那些不同。

  打开GLTF 编辑器 ,在编辑器导入一个GLB格式的飞机模型,如图所示:

  我们用GLTF 编辑器 为飞机翅膀的设置凹凸贴图,操作步骤:1、在场景中选中飞机的机身,右侧会弹出材质设置面板;2、在面板中找到凹凸贴图设置组件,直接上传材质贴图即可(材质贴图提前制作好,保存到本地),效果如下图:

GLTF 编辑器  对机身的凹凸贴图效果

  看起来似乎问题不大。

  再来看一下法线贴图:

GLTF 编辑器  对机身法线贴图的效果

  可以看到机身已经有些变形了,这是为什么呢?

  法线贴图不会直接导致模型的几何形状发生变形。然而,当使用法线贴图时,渲染过程中对顶点法线的计算可能会造成一些视觉上的变形。

  在使用法线贴图时,顶点的法线通常是根据模型的初始几何信息计算得出的,然后通过插值来确定其在表面上的准确位置。然而,由于法线贴图的作用,光照计算过程中使用了法线贴图中的法线信息,从而使得表面的光照效果具有了凹凸感。

  这种计算过程中的插值和法线的变换会导致一些视觉上的变形效果。特别是在模型的曲面、棱角或细微细节处,由于顶点之间法线的插值,可能会出现一些平滑的过渡或细节损失的情况。这样的变形通常在离模型较近的观察距离下更为显著。

  为了尽量减少法线贴图引起的模型变形,可以采取一些优化策略,如增加模型的顶点密度、使用更高分辨率的法线贴图、调整插值算法或使用其他的几何细节增强技术。同时,对于特定的场景和情况,也可以考虑使用其他的贴图技术或更复杂的几何模型来实现更精确的效果。

4、总结

  凹凸贴图(Bump Mapping)和法线贴图(Normal Mapping)都是计算机图形学中常用的纹理映射技术,用于模拟表面的凹凸效果。它们在实现上有一些区别:

工作原理:

  • 凹凸贴图:凹凸贴图通过修改像素点的法线向量,改变光照计算结果来模拟凹凸效果。它通过一张灰度图(灰度值代表高度信息)和模型的法线向量进行计算。根据灰度图中像素的灰度值,调整法线向量的方向和强度。
  • 法线贴图:法线贴图通过提供每个像素点的法线向量,直接影响光照计算结果。每个像素点的法线是由一张RGB纹理图像表示的。在渲染过程中,法线贴图中的法线向量被用来调整每个像素的光照计算结果,以产生凹凸效果。

精度和细节:

  • 凹凸贴图:凹凸贴图能够模拟比较复杂的凹凸效果,可以通过灰度图的不同灰度值来控制不同细节级别的凹凸程度。但相对于法线贴图,它的细节精度稍低。
  • 法线贴图:法线贴图能够提供更高的细节精度,能够模拟更真实的表面纹理。每个像素点的法线信息都能够精确地指定其表面的方向,使得渲染结果更加细致和精确。

实现复杂度:

  • 凹凸贴图:凹凸贴图的实现相对较简单,只需要一张灰度图和法线向量的计算即可。它在性能方面也相对较高效。
  • 法线贴图:法线贴图的实现复杂度相对较高,需要生成并存储每个像素点的法线信息,同时渲染时需要对每个像素进行法线计算。这样会增加内存占用和渲染开销。

  总的来说,凹凸贴图适用于一些简单的凹凸效果,而法线贴图则更适合提供更高精度和真实感的凹凸纹理效果。根据具体使用场景和需求,可以选择合适的贴图技术来达到期望的视觉效果。

  

原文链接:凹凸贴图和法线贴图的区别 (mvrlink.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1031308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第一百五十回 自定义组件综合实例:游戏摇杆一

文章目录 概念介绍实现方法示例代码我们在上一章回中介绍了自定义组件相关的内容,本章回中将综合使用这些内容 自定义游戏摇杆组件.闲话休提,让我们一起Talk Flutter吧。 概念介绍 我们介绍的游戏摇杆就是一个内层的小圆嵌套一个外层的大圆,大圆的位置不变,小圆只能在大圆…

读取jsonArray文件并转换为java对象工具类

json文件中存放jsonArray,将其读取出来并转换为java对象,转换的对象需要根据传入的对象动态转换,工具类编写如下: import lombok.extern.slf4j.Slf4j; import com.fasterxml.jackson.databind.ObjectMapper; import java.io.IOEx…

接口自动化测试TestNG框架环境搭建

TestNG是什么? TestNG是一个功能强大的测试框架,是Junit的一个增强版本,Junit在使用多年之前,TestNG才生效存在。NG 代表“下一代”。 TestNG框架提供了以下功能和解答我们的问题:“为什么我们需要TestNG”&#xff…

39 | selenium基础架构,UI测试架构

什么是测试基础架构? 测试基础架构指的是,执行测试的过程中用到的所有基础硬件设施以及相关的软件设施。因此,我们也把测试基础架构称之为广义的测试执行环境。通常来讲,测试基础架构主要包括以下内容: 执行测试的机器…

BANI时代下,项目如何实现价值交付?

随着时代的变化,继VUCA时代后、新的语言出现:BANI一词逐渐流行起来。BANI,取自四个英文单词 Brittle(脆弱的)、Anxious(焦虑的)、Nonlionear(非线性的)、Incomprehensibl…

CodeTON Round 6 (Div. 1 + Div. 2, Rated, Prizes!)

A.MEXanized Array AC代码: #include<iostream> #include<algorithm> #include<cstring> using namespace std; const int N210; int a[N]; int n,k,x; void solve() {cin>>n>>k>>x;if(x<k-1) {cout<<-1<<endl;return;}i…

论文阅读:AugGAN: Cross Domain Adaptation with GAN-based Data Augmentation

Abstract 基于GAN的图像转换方法存在两个缺陷&#xff1a;保留图像目标和保持图像转换前后的一致性&#xff0c;这导致不能用它生成大量不同域的训练数据。论文提出了一种结构感知(Structure-aware)的图像转换网络(image-to-image translation network)。 Proposed Framework…

电路的基本定律——基尔霍夫定律

基尔霍夫定律 &#x1f391;预备知识&#x1f391;基尔霍夫电流定律(KCL)&#x1f383;基尔霍夫电流定律的本质&#xff1a;节点上电荷具有连续性(不会突变)&#x1f383;基尔霍夫电流定律的推广&#xff1a; &#x1f391;基尔霍夫的电压定律(KVL)&#x1f383;基尔霍夫电压定…

高压放大器在哪些领域中可以进行测试实验

高压放大器是一种重要的电子设备&#xff0c;在众多领域中都可以进行测试实验。本文将为您介绍高压放大器在几个主要领域中的测试实验应用。 高压放大器在电力系统领域中扮演着重要的角色。电力系统需要经常进行各种实验&#xff0c;包括测量电压、电流、功率和阻抗等参数。高压…

yolov5的改进思想

Yolo v5一共有四个模型,分别为Yolov5s、Yolov5m、Yolov5l、Yolov5x。 Yolov5s网络最小,速度最少,AP精度也最低,如果检测的以大目标为主,追求速度,倒也是个不错的选择。 其他的三种网络,在此基础上,不断加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。 …

网络安全--防火墙

一、防火墙 二、防火墙实验 拓扑图 第一步、准备条件 1、云的设置 单击云设备&#xff0c;先选择UDP&#xff0c;再增加&#xff0c;增加之后就会记录在下面。 再增加一个虚拟的网卡&#xff0c;选择一个电脑中的虚拟网卡&#xff0c;然后增加。 先选择对应端口&#xff0c;…

【大数据开发技术】实验02-Hadoop常用命令

文章目录 Hadoop常用命令1、实验描述2、实验环境3、相关技能4、知识点5、实验步骤6、总结 练习提高 Hadoop常用命令 1、实验描述 熟悉HDFS的命令行接口 2、实验环境 虚拟机数量&#xff1a;3 系统版本&#xff1a;Centos 7.5 Hadoop版本&#xff1a;Apache Hadoop 2.7.3 …

JMeter 常见函数讲解

当使用JMeter进行性能测试或负载测试时&#xff0c;函数是一个非常有用的工具&#xff0c;可以帮助生成动态的测试数据或处理测试结果。 下面是一些常用的JMeter函数的详细讲解和并列示例&#xff1a; 1、__threadNum&#xff1a; 返回当前线程的编号。可以在测试过程中用于…

爬虫获取静态网页数据

自动爬取网页数据 正常情况下是我们使用浏览器输入指定url&#xff0c;对服务器发送访问请求&#xff0c;服务器返回请求信息&#xff0c;浏览器进行解析为我们看到的界面&#xff0c;爬虫就是使用python脚本取代正常的浏览器&#xff0c;获取相应服务器的返回请求信息&#x…

广告牌安全监测系统,用科技护航大型广告牌安全

城市的街头巷尾&#xff0c;处处可见高耸的广告牌&#xff0c;它们以各种形式和颜色吸引着行人的目光。然而&#xff0c;作为城市景观的一部分&#xff0c;广告牌的安全性常常被我们所忽视。广告牌量大面大&#xff0c;由于设计、材料、施工方法的缺陷&#xff0c;加上后期的检…

报错解决: 未能解析此远程名称: ‘raw.githubusercontent.com‘

如果出现类似报错 添加 199.232.68.133 raw.githubusercontent.com 到 C:\Windows\System32\drivers\etc\hosts 的末尾 再尝试执行

【RocketMQ】消息中间件学习笔记

【RocketMQ】消息中间件学习笔记 【一】RocketMQ概述【1】MQ简介【2】MQ永用途&#xff08;1&#xff09;限流削峰&#xff08;2&#xff09;异步解耦&#xff08;3&#xff09;数据收集 【3】RocketMQ 介绍&#xff08;1&#xff09;RocketMQ 特点&#xff08;2&#xff09;Ro…

如何提升LED显示屏显示效果?

影响LED显示屏显示效果的因素有很多&#xff0c;以下是一些主要的因素&#xff1a; LED灯珠的质量和性能&#xff1a;LED灯珠是LED显示屏的核心组件&#xff0c;其质量和性能会直接影响到整个LED显示屏的显示效果。 显示屏的亮度&#xff1a;LED显示屏的亮度是影响显示效果的一…

Solid框架节点级响应性

前言 随着组件化、响应式、虚拟DOM等技术思想引领着前端开发的潮流&#xff0c;相关的技术框架大行其道&#xff0c;就以目前主流的Vue、React框架来说&#xff0c;它们都基于组件化、响应式、虚拟DOM等技术思想的实现&#xff0c;但是具有不同开发使用方式以及实现原理&#…

霍夫曼编码,计算霍夫曼编码树(数字图像处理大题复习 P7)

文章目录 计算出 x1~x6 的树计算 x1~x6 的编码得出霍夫曼编码 w1~w6 计算出 x1~x6 的树 我们先对 x1~x6 进行排序把最底下的加起来&#xff0c;上面写0 下面写1 然后一层一层加上去&#xff0c;注意加上去以后要 重新排序 计算 x1~x6 的编码 举例&#xff0c;从 x5 出发&…