机器学习第八课--决策树

news2025/1/7 6:12:00

举个例子,“明天如果下雨我就不出门了。” 在这里我们用了一个决策条件:是否下雨,然后基于这个条件会有不同的结果:出门和不出门。 这就是一个经典的决策树!

决策树的核心组成部分---节点  边 

最后的结论就是第一个决策树要优于第二个决策树,因为它的准确率更高。由于这个问题本身及其简单,所以我们甚至都可以罗列出所有可能的决策树,然后再判断哪一个最好。但实际上,稍微复杂点的问题就不太可能这么做了,因为所有可能的决策树数量太多,不可能一一罗列。

不确定性的减少

 已经知道如何用数学来表示不确定性了。 接下来,我们再回到决策树的问题上。那又如何表示不确定性的减少呢? 无非就是原来的不确定性减去现在的不确定性!下面我们试图分别对”是否发烧“和“是否疼痛”两个特征,分别计算一下不确定性的减少。

构造决策树的时候,每一步都要根据不确定性(信息熵),来选择这棵树的当前的根节点。

这种不确定性的减少也叫作信息增益(information gain)。构建决策树的过程无非是每一步通过信息增益来选择最好的特征作为当前的根节点,以此类推,持续把树构造起来。下面,我们通过一个稍微复杂一点的例子来说明一棵决策树的构建的完整过程。

构建决策树的整体过程

每个都做不确定性减小的计算,哪个最大,就把哪个当作根节点

以上是决策树的构建过程。总结一下,每一步的构建其实就是选择当前最好的特征作为根节点。然后持续地重复以上过程把整棵树构建起来。其中,信息增益充当着每次选择特征的标准。当然,除了信息增益,我们也可以选择其他的指标作为选择特征的标准。到此为止,决策树的构建过程已经说完了。除了这些其实还有几个重要问题需要考虑,比如如何让决策树避免过拟合、如何处理连续型特征、如何使用决策树来解决回归问题等。

对决策树调参的时候,无非主要来调整树的深度、每一个叶节点样本的个数等等。具体最优的参数一般通过交叉验证的方式来获得,这一点跟其他模型是一样的。

处理连续型变量

我们来学习一下如何处理连续型特征以及用决策树来解决回归问题。如果一个特征是离散型特征,处理方式是比较直观的,无非就是针对每一个特征创建一个分支。但对于连续型特征倒是没有那么直观,感觉有点没有头绪。连续型特征的处理上其实有很多种方法。对于连续型特征,我们可能会有“如果一个年龄大于20”,则怎么怎么样,不到20再怎么怎么样。所以这里的核心问题是数字“20”,也叫作阈值。

决策树回归

回归问题是指在统计学和机器学习中,根据已知数据的特征,建立一个数学模型来预测一个连续型的因变量。换句话说,回归问题是用于预测或估计数值型输出的问题。

当我们使用决策树解决分类问题时,可以计算准确率来评估一个决策树的好坏。但对于回归问题则需要使用不同的指标,其中一个常用的指标叫作MSE(mean square error),也是线性回归模型所使用的评估标准。

针对于回归问题的总结。唯一的区别是把分类问题里的信息熵替换成了变量的标准差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1030900.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nvm 版本管理详解

掌握 Node Version Manager (nvm):优化 Node.js 版本管理 Node.js 是一种强大的服务器端 JavaScript 运行环境,它经常需要根据项目的要求使用不同的 Node.js 版本。为了更轻松地管理不同版本的 Node.js,Node Version Manager(nvm&…

这些PLC项目调试常见错误类型,你都了解吗?

各种品牌PLC都具有自我诊断功能,但PLC修理的技巧在于,充分运用该功能进行分析,然后精确寻找问题所在。整理了当PLC呈现反常报警时,PLC修理人员需要了解的8种常见错误类型。 CPU反常 CPU反常报警时,应查看CPU单元衔接于…

计算机视觉与深度学习-经典网络解析-AlexNet-[北邮鲁鹏]

这里写目录标题 AlexNet参考文章AlexNet模型结构AlexNet共8层:AlexNet运作流程 简单代码实现重要说明重要技巧主要贡献 AlexNet AlexNet 是一种卷积神经网络(Convolutional Neural Network,CNN)的架构。它是由Alex Krizhevsky、Il…

工作应当有挑战

有挑战 才能有所成长 正所谓人到山前必有路 是挑战 一般就会有未知 未知往往伴随着困难 有困难 并不可怕,也不必自我抱怨,自我抱怨只会陷入无尽的精神内耗 我们只要做好自己 困难就会迎刃而解 如果自己的获得 没有达到自己的期望 其实那也不必气馁 再…

【深度学习】实验12 使用PyTorch训练模型

文章目录 使用PyTorch训练模型1. 线性回归类2. 创建数据集3. 训练模型4. 测试模型 附:系列文章 使用PyTorch训练模型 PyTorch是一个基于Python的科学计算库,它是一个开源的机器学习框架,由Facebook公司于2016年开源。它提供了构建动态计算图…

【Spatial-Temporal Action Localization(七)】论文阅读2022年

文章目录 1. TubeR: Tubelet Transformer for Video Action Detection摘要和结论引言:针对痛点和贡献模型框架TubeR Encoder:TubeR Decoder:Task-Specific Heads: 2. Holistic Interaction Transformer Network for Action Detect…

少儿编程 2023年5月中国电子学会图形化编程等级考试Scratch编程三级真题解析(判断题)

2023年5月scratch编程等级考试三级真题 判断题(共10题,每题2分,共20分) 26、运行下列程序后,变量c的值是6 答案:错 考点分析:考查积木综合使用,重点考查变量积木的使用 最后一步c设为a+b,所以c=1+2=3,答案错误 27、变量a与变量b的初始值都是1,a+b等于2。运行下列…

【2023华为杯B题】DFT类矩阵的整数分解逼近(思路及代码下载)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

ETHERNET IP站转CCLKIE协议网关

产品介绍 JM-EIP-CCLKIE是自主研发的一款 ETHERNET/IP 从站功能的通讯网关。该产品主要功能是实现 CCLINK IEFB 总线和 ETHERNET/IP 网络的数据互通。 本网关连接到 ETHERNET/IP 总线中做为从站使用,连接到 CCLINK IEFB 总线中做为从站使用。 产品参数 技术参数 …

A : DS顺序表--类实现

Description 实现顺序表的用C语言和类实现顺序表 属性包括&#xff1a;数组、实际长度、最大长度&#xff08;设定为1000&#xff09; 操作包括&#xff1a;创建、插入、删除、查找 类定义参考 #include<iostream> using namespace std; #define ok 0 #define error…

Unity实现角色受到攻击后屏幕抖动的效果

文章目录 实现效果摄像机抖动脚本 玩家受伤其他文章 实现效果 首先看一下实现效果。 摄像机 我们要使用屏幕抖动&#xff0c;使用的是CinemachineVirtualCamera这个组件&#xff0c;这个组件需要在包管理器中进行导入。 导入这个组件之后&#xff0c;创建一个Chinemachine-…

学习记忆——宫殿篇——记忆宫殿——记忆桩——单间+客厅+厨房+厕所+书房+院子

文章目录 单间客厅厨房厕所书房院子 单间 水壶 水龙头 香皂 果汁机 电视 门空间 花 红酒 葡萄 不锈钢 白毛沙发 彩色垫子 吉他 皮椅 挂画 风扇 糖抱枕 盒子 花土 水晶腿 衣柜 笔 三环相框 水壶 壁挂 台灯 被 网球拍 足球 抽屉 闹钟 蝴蝶 心 斑马 三轮车 音响 椅子 碗 玩偶 烟灰…

Android 12 源码分析 —— 应用层 六(StatusBar的UI创建和初始化)

Android 12 源码分析 —— 应用层 六&#xff08;StatusBar的UI创建和初始化) 在前面的文章中,我们分别介绍了Layout整体布局,以及StatusBar类的初始化.前者介绍了整体上面的布局,后者介绍了三大窗口的创建的入口处,以及需要做的准备工作.现在我们分别来细化三大窗口的UI创建和…

苹果手机怎么录屏?1分钟轻松搞定

虽然一直使用苹果手机&#xff0c;但是对它的录屏功能还不是很会使用。苹果手机怎么录屏&#xff1f;录屏可以录制声音吗&#xff1f;麻烦大家教教我&#xff01; 苹果手机为用户提供了十分便捷的内置录屏功能&#xff0c;可以让您随时随地录制手机上的内容。但是很多小伙伴在第…

六角形锌饼的尺寸及其允许偏差

声明 本文是学习GB-T 3610-2010 电池锌饼. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 1 范围 本标准规定了电池锌饼的产品分类、要求、试验方法、检验规则及标志、包装、运输、贮存、质量证明 书和合同(或订货单)等内容。 本标准适用于制造锌-…

如何把.mhd和.raw文件转换为DICOM文件

之前拿到体渲染的人头数据Manix&#xff0c;格式为mhd和raw格式的需要转换为DICOM ResearchGate上的一个帖子帮了大忙&#xff08;链接如下&#xff09;&#xff0c;有人说用ImageJ&#xff0c;有的说用XMedCon。我试了半天也没用ImageJ弄成功&#xff0c;但是XMedCon一下就好…

【有关mysql的实操记录】

一. 导入导出数据 1. 导出mysql的数据库作为备份文件 mysqldump -u 用户名 -p 数据库名 >导出文件路径.sql 回车之后&#xff0c;提示输入密码. 2. 导入mysql之前备份的数据库文件 mysql -u 用户名 -p 数据库名 <导入文件路径.sql 回车之后&#xff0c;提示输入密码 …

总结分析 | 基于phpmyadmin的渗透测试

一、什么是phpmyadmin&#xff1f; phpMyAdmin 是一个以PHP为基础&#xff0c;以Web-Base方式架构在网站主机上的MySQL的数据库管理工具&#xff0c;让管理者可用Web接口管理MySQL数据库。借由此Web接口可以成为一个简易方式输入繁杂SQL语法的较佳途径&#xff0c;尤其要处理大…

CG-78静力水准仪采用压力传感器测量液体的压差

CG-78静力水准仪采用压力传感器测量液体的压差产品概述 静力水准仪是测量两点间或多点间相对高程变化的仪器。由储液器、高精度芯体和特别定制电路模块、保护罩等部件组成。沉降系统由多个同型号传感器组成&#xff0c;储液罐之间由通气管和通液管相连通&#xff0c;基准点置于…

循环神经网络——下篇【深度学习】【PyTorch】【d2l】

文章目录 6、循环神经网络6.7、深度循环神经网络6.7.1、理论部分6.7.2、代码实现 6.8、双向循环神经网络6.8.1、理论部分6.8.2、代码实现 6.9、机器翻译6.9.1、理论部分 6.10、编码器解码器架构6.10.1、理论部分 6、循环神经网络 6.7、深度循环神经网络 6.7.1、理论部分 设计…