NLP文本生成全解析:从传统方法到预训练完整介绍

news2024/11/25 16:51:22

目录

  • 1. 引言
    • 1.1 文本生成的定义和作用
    • 1.2 自然语言处理技术在文本生成领域的使用
  • 2 传统方法 - 基于统计的方法
    • 2.1.1 N-gram模型
    • 2.1.2 平滑技术
  • 3. 传统方法 - 基于模板的生成
    • 3.1 定义与特点
    • 3.2 动态模板
  • 4. 神经网络方法 - 长短时记忆网络(LSTM)
    • LSTM的核心概念
    • PyTorch中的LSTM
  • 5. 神经网络方法 - Transformer
    • Transformer的核心概念
    • PyTorch中的Transformer
  • 6. 大型预训练模型 - GPT文本生成机制
    • 大型预训练模型的核心概念

本文深入探讨了文本生成的多种方法,从传统的基于统计和模板的技术到现代的神经网络模型,尤其是LSTM和Transformer架构。文章还详细介绍了大型预训练模型如GPT在文本生成中的应用,并提供了Python和PyTorch的实现代码。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

1. 引言

1.1 文本生成的定义和作用

file

文本生成是自然语言处理的一个核心子领域,它涉及使用模型来自动创建自然语言文本。这种生成可以是基于某些输入的响应,如图像或其他文本,也可以是完全自主的创造。

文本生成的任务可以是简单的,如自动回复邮件,也可以是更复杂的,如编写新闻文章或生成故事。它通常包括以下步骤:

  1. 确定目标和约束:明确生成文本的目标和约束条件,如风格、语言和长度等。
  2. 内容的生成:基于预定义的目标和约束条件来生成内容。
  3. 评价和优化:使用不同的评价指标来测试生成的文本,并进行必要的优化。

例子:

  • 自动回复邮件:根据收到的邮件内容,系统可以生成一个简短的、相关的回复。
  • 新闻文章生成:利用已有的数据和信息来自动生成新闻文章。
  • 故事生成:创建一个可以根据输入的提示来生成故事的系统。

1.2 自然语言处理技术在文本生成领域的使用

自然语言处理技术为文本生成提供了强大的工具和方法。这些技术可以用于解析输入数据、理解语言结构、评估生成文本的质量,以及优化生成过程。

  1. 序列到序列模型:这是一个广泛应用于文本生成任务的框架,如机器翻译和摘要生成。模型学习将输入序列(如句子)转化为输出序列(如另一种语言的句子)。

  2. 注意力机制:在处理长序列时,注意力机制可以帮助模型关注输入数据的关键部分,从而产生更准确的输出。

  3. 预训练语言模型:像BERT和GPT这样的模型通过大量的文本数据进行预训练,之后可以用于各种NLP任务,包括文本生成。

  4. 优化技术:如束搜索和采样策略,它们可以帮助生成更流畅、准确的文本。

例子:

  • 机器翻译:使用序列到序列模型,将英语句子转化为法语句子。
  • 生成摘要:利用注意力机制从长篇文章中提取关键信息,生成简短的摘要。
  • 文本填充:使用预训练的GPT模型,根据给定的开头生成一个完整的故事。

随着技术的进步,自然语言处理技术在文本生成中的应用也越来越广泛,为我们提供了更多的可能性和机会。


2 传统方法 - 基于统计的方法

file

在深度学习技术盛行之前,文本生成主要依赖于基于统计的方法。这些方法通过统计语料库中的词语和短语的频率,预测下一个词或短语的出现概率。

2.1.1 N-gram模型

定义:N-gram模型是基于统计的文本生成方法中的一种经典技术。它基于一个假设,即第N个词的出现只与前面的N-1个词有关。例如,在一个trigram(3-gram)模型中,下一个词的出现只与前两个词有关。

例子:考虑句子 “我爱学习人工智能”,在一个bigram(2-gram)模型中,“人工” 出现后的下一个词可能是 “智能”。

from collections import defaultdict, Counter
import random

def build_ngram_model(text, n=2):
    model = defaultdict(Counter)
    for i in range(len(text) - n):
        context, word = tuple(text[i:i+n-1]), text[i+n-1]
        model[context][word] += 1
    return model

def generate_with_ngram(model, max_len=20):
    context = random.choice(list(model.keys()))
    output = list(context)
    for i in range(max_len):
        if context not in model:
            break
        next_word = random.choices(list(model[context].keys()), weights=model[context].values())[0]
        output.append(next_word)
        context = tuple(output[-len(context):])
    return ' '.join(output)

text = "我 爱 学习 人工 智能".split()
model = build_ngram_model(text, n=2)
generated_text = generate_with_ngram(model)
print(generated_text)

2.1.2 平滑技术

定义:在统计模型中,我们经常会遇到一个问题,即语料库中可能有一些N-grams从未出现过,导致其概率为0。为了解决这个问题,我们使用平滑技术来为这些未出现的N-grams分配一个非零概率。

例子:使用Add-1平滑(Laplace平滑),我们将每个词的计数加1,来保证没有词的概率为0。

def laplace_smoothed_probability(word, context, model, V):
    return (model[context][word] + 1) / (sum(model[context].values()) + V)

V = len(set(text))
context = ('我', '爱')
probability = laplace_smoothed_probability('学习', context, model, V)
print(f"P('学习'|'我 爱') = {probability}")

通过使用基于统计的方法,虽然我们可以生成文本,但这些方法有其局限性,尤其是在处理长文本时。随着深度学习技术的发展,更先进的模型逐渐取代了传统方法,为文本生成带来了更多的可能性。


3. 传统方法 - 基于模板的生成

基于模板的文本生成是一种早期的文本生成方法,依赖于预定义的句子结构和词汇来创建文本。这种方法虽然简单直观,但其生成的文本通常缺乏变化和多样性。

3.1 定义与特点

定义:模板生成方法涉及到使用预先定义的文本模板和固定的结构,根据不同的数据或上下文填充这些模板,从而生成文本。

特点

  1. 确定性:输出是可预测的,因为它直接基于模板。
  2. 快速生成:不需要复杂的计算,只需简单地填充模板。
  3. 局限性:输出可能缺乏多样性和自然感,因为它完全基于固定模板。

例子:在天气预报中,可以有一个模板:“今天在{城市}的最高温度为{温度}度。”。根据不同的数据,我们可以填充该模板,生成如“今天在北京的最高温度为25度。”的句子。

def template_generation(template, **kwargs):
    return template.format(**kwargs)

template = "今天在{city}的最高温度为{temperature}度。"
output = template_generation(template, city="北京", temperature=25)
print(output)

3.2 动态模板

定义:为了增加文本的多样性,我们可以设计多个模板,并根据上下文或随机性选择不同的模板进行填充。

例子:针对天气预报,我们可以有以下模板:

  1. “{city}今天的温度达到了{temperature}度。”
  2. “在{city},今天的最高气温是{temperature}度。”
import random

def dynamic_template_generation(templates, **kwargs):
    chosen_template = random.choice(templates)
    return chosen_template.format(**kwargs)

templates = [
    "{city}今天的温度达到了{temperature}度。",
    "在{city},今天的最高气温是{temperature}度。"
]

output = dynamic_template_generation(templates, city="上海", temperature=28)
print(output)

尽管基于模板的方法为文本生成提供了一种简单和直接的方式,但它在处理复杂和多样化的文本生成任务时可能会显得力不从心。现代深度学习方法提供了更强大、灵活和多样化的文本生成能力,逐渐成为主流方法。


4. 神经网络方法 - 长短时记忆网络(LSTM)

file
长短时记忆网络(LSTM)是一种特殊的递归神经网络(RNN),专为解决长期依赖问题而设计。在传统的RNN中,随着时间步的增加,信息的传递会逐渐变得困难。LSTM通过其特殊的结构来解决这个问题,允许信息在时间步之间更容易地流动。

LSTM的核心概念

定义:LSTM的核心是其细胞状态,通常表示为(C_t)。与此同时,LSTM包含三个重要的门:遗忘门、输入门和输出门,这三个门共同决定信息如何被更新、存储和检索。

  1. 遗忘门:决定哪些信息从细胞状态中被遗忘或丢弃。
  2. 输入门:更新细胞状态,决定哪些新信息被存储。
  3. 输出门:基于细胞状态,决定输出什么信息。

例子:假设我们正在处理一个文本序列,并想要记住某个词汇的性别标记(如“他”或“她”)。当我们遇到一个新的代词时,遗忘门可能会帮助模型忘记旧的性别标记,输入门会帮助模型存储新的标记,而输出门则会在下一个时间步输出这个标记,以保持序列的一致性。

PyTorch中的LSTM

使用PyTorch,我们可以轻松地定义和训练一个LSTM模型。

import torch.nn as nn
import torch

# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        # 初始化隐藏状态和细胞状态
        h0 = torch.zeros(num_layers, x.size(0), hidden_dim).requires_grad_()
        c0 = torch.zeros(num_layers, x.size(0), hidden_dim).requires_grad_()
        out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
        out = self.linear(out[:, -1, :])
        return out

input_dim = 10
hidden_dim = 20
output_dim = 1
num_layers = 1
model = LSTMModel(input_dim, hidden_dim, output_dim, num_layers)

# 一个简单的例子,输入形状为 (batch_size, time_steps, input_dim)
input_seq = torch.randn(5, 10, 10)
output = model(input_seq)
print(output.shape)  # 输出形状为 (batch_size, output_dim)

LSTM由于其在处理时间序列数据,尤其是在长序列中保留关键信息的能力,已经在多种自然语言处理任务中取得了显著的成功,例如文本生成、机器翻译和情感分析等。


5. 神经网络方法 - Transformer

file
Transformer 是近年来自然语言处理领域的重要进展,它摒弃了传统的递归和卷积结构,完全依赖自注意力机制来处理序列数据。

Transformer的核心概念

定义:Transformer 是一个基于自注意力机制的深度学习模型,旨在处理序列数据,如文本。其核心是多头自注意力机制,可以捕捉序列中不同位置间的依赖关系,无论它们之间有多远。

多头自注意力:这是 Transformer 的关键部分。每个“头”都学习序列中的不同位置的表示,然后将这些表示组合起来。

位置编码:由于 Transformer 不使用递归或卷积,因此需要额外的位置信息来了解序列中词的位置。位置编码将这种信息添加到序列的每个位置。

例子:考虑句子 “The cat sat on the mat.” 如果我们想强调 “cat” 和 “mat” 之间的关系,多头自注意力机制使 Transformer 可以同时关注 “cat” 和距离较远的 “mat”。

PyTorch中的Transformer

使用 PyTorch,我们可以使用现成的 Transformer 模块来定义一个简单的 Transformer 模型。

import torch.nn as nn
import torch

class TransformerModel(nn.Module):
    def __init__(self, d_model, nhead, num_encoder_layers, num_decoder_layers):
        super(TransformerModel, self).__init__()
        self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers)
        self.fc = nn.Linear(d_model, d_model)  # 示例中的一个简单的线性层

    def forward(self, src, tgt):
        output = self.transformer(src, tgt)
        return self.fc(output)

d_model = 512
nhead = 8
num_encoder_layers = 6
num_decoder_layers = 6

model = TransformerModel(d_model, nhead, num_encoder_layers, num_decoder_layers)

# 示例输入,形状为 (sequence_length, batch_size, d_model)
src = torch.randn(10, 32, d_model)
tgt = torch.randn(20, 32, d_model)

output = model(src, tgt)
print(output.shape)  # 输出形状为 (tgt_sequence_length, batch_size, d_model)

Transformer 由于其强大的自注意力机制和并行处理能力,已经在多种自然语言处理任务中取得了突破性的成果,如 BERT、GPT 和 T5 等模型都是基于 Transformer 架构构建的。


6. 大型预训练模型 - GPT文本生成机制

file

近年来,大型预训练模型如 GPT、BERT 和 T5 等已成为自然语言处理领域的标准模型。它们在多种任务上都展现出了卓越的性能,尤其在文本生成任务上。

大型预训练模型的核心概念

定义:大型预训练模型是通过在大量无标签数据上进行预训练的模型,然后在具体任务上进行微调。这种“预训练-微调”范式使得模型能够捕捉到自然语言的丰富表示,并为各种下游任务提供一个强大的起点。

预训练:模型在大规模文本数据上进行无监督学习,如书籍、网页等。此时,模型学习到了词汇、语法和一些常识信息。

微调:在预训练后,模型在特定任务的标记数据上进行有监督学习,如机器翻译、文本生成或情感分析。

例子:考虑 GPT-3,它首先在大量的文本上进行预训练,学习到语言的基本结构和信息。然后,可以用很少的样本或无需任何额外的训练,直接在特定任务上生成文本。


关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1029453.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

漫画 | 两年,我学会了所有的编程语言!

本文想要探讨的一个话题是:作为一个程序员,如何看待这么多的编程语言?是不是要学习?该怎么学习?其实很多人都有这样的体会,当你学会了一门语言以后,再去学习新的语言,难度会大大降低…

音乐随行,公网畅享,群辉Audiostation给你带来听歌新体验!

文章目录 本教程解决的问题是:按照本教程方法操作后,达到的效果是本教程使用环境:1 群晖系统安装audiostation套件2 下载移动端app3 内网穿透,映射至公网 很多老铁想在上班路上听点喜欢的歌或者相声解解闷儿,于是打开手…

10分钟设置免费海外远程桌面

前言 本教程将向您介绍如何使用 Amazon Lightsail 服务的免费套餐轻松搭建属于您的远程桌面。依托于 Amazon 全球可用区,您可以在世界各地搭建符合您配置需求的远程桌面。 本教程需要先拥有亚马逊云科技海外账户。现在注册亚马逊云科技账户可以享受12个月免费套餐…

基于springboot广场舞团系统springboot16

大家好✌!我是CZ淡陌。一名专注以理论为基础实战为主的技术博主,将再这里为大家分享优质的实战项目,本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目,希望你能有所收获,少走一些弯路…

云服务器ECS_云主机_服务器托管_计算-阿里云

阿里云服务器是什么?云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务,云服务器可以降低IT成本提升运维效率,免去企业或个人前期采购IT硬件的成本,阿里云服务器让用户像使用水、电、天然气等公共资源一样便捷、高效地使用服务器…

Linux0.11——第一回 最开始的两行代码

按下开机键后究竟发生了什么 官方教科书说法: BIOS 按照“启动顺序”,把控制权转交给排在第一位的存储设备:硬盘。然后在硬盘里寻找主引导记录的分区,这个分区告诉电脑操作系统在哪里,并把操作系统被加载到内存中&…

一、python解题——求序列最长递增

解题代码: import os import sys# 请在此输入您的代码 n int(input()) a list(map(int, input().split())) # 创建一个初始元素全为1的列表,用来存放每个递增序列的长度 b [1 for x in range(0, n)] # 设置num,用来控制b列表的下标 num …

中秋编程之夜:程序员的特殊庆祝方式

中秋编程之夜:程序员的特殊庆祝方式 摘要引言正文1. 中秋编程马拉松2. 月光下的代码编写3. 月饼分享与技术讨论4. 创意月亮主题项目 总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客👦🏻 《java 面试题大全》 &am…

竞赛 基于深度学习的人脸表情识别

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的人脸表情识别 该项目较…

Webpack打包CSS文件,解决You may need an appropriate loader to handle this file type报错

在项目文件夹下创建webpack.config.js文件,该文件就是Webpack的配置文件 注意:该文件中遵循Node.js的代码格式规范 ,需要对导出配置文件中的内容 Webpack在默认情况下只能打包js文件,如果我们希望他能够打包其他类型的文件&#…

Flutter flutter.minSdkVersion的实际文件位置

Flutter 项目的Android相关版本号配置: flutter.minSdkVersion 的版本号配置文件实际路径: …/flutter_sdk/packages/flutter_tools/gradle/src/main/groovy/flutter.groovy Flutter版本号如下: bzbMacBook-Pro ccsmec % flutter --version …

Linux下的第一个小程序——进度条

目录 ​编辑 一,进度条的第一个版本 1.准备工作 2.写Makefile文件 3.开始构建进度条 1. process.h文件 2. process.c文件 3.main.c文件 二,进度条的第二个版本 1.为什么还要写第二个版本? 2.如何升级? 3.升级代码 1.搭…

【操作系统】实验一 Linux初步

文章目录 Linux初步一、实验目的二、实验内容 Linux初步 一、实验目的 通过proc文件系统观察整个Linux内核和系统的一些重要特征,并编写一个程序,使用proc文件系统获得以及修改系统的各种配置参数。 本实验需要学生具有Linux的基本操作技能&#xff0c…

使用LDA(线性判别公式)进行iris鸢尾花的分类

线性判别分析((Linear Discriminant Analysis ,简称 LDA)是一种经典的线性学习方法,在二分类问题上因为最早由 [Fisher,1936] 提出,亦称 ”Fisher 判别分析“。并且LDA也是一种监督学习的降维技术,也就是说它的数据集的每个样本都…

【LeetCode】来玩玩四数之和吧

Problem: 18. 四数之和 文章目录 解题思路算法原理分析复杂度Code 解题思路 讲述看到这一题的思路 首先我们来分析一下本题的思路:这题和我们之前所讲过的一题叫做 三数之和,与本题非常得类似,如果没有做过的扣友可以先去做做看那我们来分析一…

【OpenSSL】单向散列函数

什么是单向散列函数 任意长度数据生成固定长度是散列快速计算消息变化散列变化单向不可逆,抗碰撞 应用场景 文件完整性口令加密消息认证伪随机数配合非对称加密做数字签名比特币工作量证明 单向hash抗碰撞 弱抗碰撞 给定X和hash值的情况下,找到另外…

2. PCIE TLP解包封包

第二十一讲、PCIE的TLP包的封包解包原理.pdf 00 Packet Coding.docx 掌握如何发送接收 Mrd(memory read TLP)、Mwr(Memory write TLP)、Cpl(Completion TLP)和Cpld(Completion with data TLP) 命令包 1、 TLP 包是由 PCIE 的 Endpoint 或者 Root Complex…

使用PageHelper进行分页

使用PageHelper进行分页 1. 使用Spring Boot2. 不使用Spring Boot的实现 1. 使用Spring Boot 要在Spring MVC中使用PageHelper进行分页,你需要完成以下几个步骤: 添加PageHelper依赖:在你的项目中添加PageHelper的Maven或Gradle依赖。例如&…

22年4月后树莓派烧录镜像、联网以及ssh 远程投屏失败的注意事项

1. 树莓派刷机 树莓派在22年4月后新增了关于对用户安全的修改,所以之前的在SD 卡中放入ssh文件以及wifi 账号和密码的方法已经不好使了。很多用户发现烧录镜像后找不到树莓派ip了,特别是没有屏幕的用户,ssh更是连接不上。 解决办法就是官网…

[C#]vs2022安装后C#创建winform没有.net framework4.8

问题,我已经在visualstudio安装程序中安装了.net框架4.8的SDK和运行时。 然而,我在visual studio 2022中找不到已安装的框架。 我已经检查了我的VS 2019,它可以很好地定位网络框架4.8,它可以构建我的项目。但VS 2022不能。 我已经…