数据结构与算法(五)--链表概念以及向链表添加元素

news2024/11/17 3:41:00

一、前言

今天我们学习另一种非常重要的线性数据结构–链表,之前我们已经学习了三种线性数据结构,分别是动态数组,栈和队列。其中队列我们额外学习了队列的另一种实现方式–循环队列。其实我们自己实现过前三个数据结构就知道,它们底层均依托静态数组,靠resize解决固定容量问题。而链表和前三种均不同,它是真正的动态数据结构
学好链表,有利于:

  • 链表是最简单的动态数据结构,方便你学习后面的二分搜索树,Trie,AVL,红黑树等等
  • 更深入的理解引用(或者指针)
  • 更深入的理解递归
  • 辅助生成其他数据结构,例如我们之前学习的栈,队列可以通过链表实现,亦或是其他复杂的数据结构如图,哈希表等

二、链表

  • 数据存储在"节点"(Node)中
class Node<T>{
    T t;   //数据
    Node next; //指向当前节点的下一个节点
}

就像火车一样,每一个节点就像一个个车厢,车厢除了人(数据),还要和其他车厢进行连接,以使得数据是整合在一起的,用户可以方便的在所有的数据上进行查询等其他操作。而数据和数据之间的连接就是靠Node next决定的。
在这里插入图片描述
而我们的链表自然也不可能是无穷无尽的,我们链表存储的数据一定是有限的,那么最后一个节点它的next存储的就是一个NULL:我们也可以反过来得知,如果一个节点的NEXT是NULL,那么就说明这个节点一定是最后一个节点
在这里插入图片描述

  • 优点:真正的动态,不需要处理固定容量的问题,需要多少数据,就生成多少节点,并将它们连接起来。不需要像静态数组一样事先预定好一块儿固定空间。
  • 缺点:丧失了随机访问的能力,说白了就是不能像数组一样直接拿一个索引,找出索引对应的元素。这是因为从底层机制上,数组所开辟的空间在内存里是连续分布的,所以我们可以直接去寻找索引对应的偏移,直接计算机相应的数据所存储的地址,直接用O(1)的复杂度就把这个元素找出来。但是链表不同,链表是靠next一层一层连接的,所以在计算机的底层每一个节点在内存的位置是不同的,我们必须靠next一点一点的找到我们想要的元素,这就是链表最大的缺点

基于上述理论,我们可以有如下数组和链表的对比:

数组

  • 数组最好用于索引有语意的情况。如scores[2]
  • 最大的优点:支持快速查询

链表

  • 链表不适合用于索引有语意的情况
  • 最大的优点:动态

但是其实我们后续实现动态数组有说过,我们处理的都是索引没有语意的情况,对于这类不方便使用索引的数据,我们使用链表存储这些数据是更合适的。由于它最大的优点就是动态。
我们可以先初步搭建一下我们链表的类,首先创建一个链表类,然后创建一个内部私有类Node节点,就和我们之前提的是一样的:

public class LinkedList<T> {
	//只有在链表结构内才能访问Node,链表结构外用户无法访问,因为对于用户而言,他们不需要指定链表的底层实现
	private class Node {
		public T data;
		public Node next;

		public Node(T data, Node next) {
			this.data = data;
			this.next = next;
		}

		public Node(T data) {
			this(data, null);
		}

		public Node() {
			this(null, null);
		}

		@Override
		public String toString() {
			return "Node{" +
					"data=" + data +
					", next=" + next +
					'}';
		}
	}
}

三、向链表添加元素

对于链表来说,我们要想访问链表中的所有节点,相应的必须把链表头存储起来,通常呢,链表的头结点叫作head,所以我们的LinkedList类中应该有一个Node类型的变量叫作head。它指向链表中的第一个节点。我们首先把我们linkedList的基础变量声明出来。

private Node head;
	private int size;

	public LinkedList() {
		this.head = null;
		this.size = 0;
	}

	public int getSize(){
		return size;
	}

	public boolean isEmpty(){
		return size == 0;
	}

①往链表头部增加元素
我们之前学习数组添加元素的时候,第一个说的方法是往数组末尾添加元素,这是因为对于数组而言,往数组末尾添加元素是比较方便的。
但链表则正好相反,对于链表而言往连边头部增加元素是非常方便的。
这其实很好理解,因为数组有size这个变量,它直接指向的是第一个未被添加元素的位置,所以直接往尾部添加很方便,因为有size这个变量在跟踪数组的尾巴。
而链表我们有头部的变量,但是我们没有相应的变量去跟踪链表的尾巴,所以我们往链表头添加元素很方便。
例如我现在要插入一个666的节点,图示如下:
在这里插入图片描述

往链表头添加元素后,我们要把这个元素和链表连接起来,所以我们需要让新添加的Node指向我们的head,然后由于连起来后,这个链表已经成了新的头节点,所以我们要把新添加的Node赋值给我们的头结点。

node.next = head;
head = node;

那么我们往头部插入元素实现就很简单:

public void addFirst(T t){
		//声明一个新的节点,将这个新节点指向我们的头结点,然后再让新的节点成为头结点
		Node node = new Node(t);
		node.next = head;
		head = node;
		size ++;
	}

其实上面的方法我们还有更优雅的写法:

	public void addFirst(T t){
		//声明一个新的节点,将这个新节点指向我们的头结点,然后再让新的节点成为头结点
//		Node node = new Node(t);
//		node.next = head;
//		head = node;
        //这一行代码干了上面三行代码的事
		head = new Node(t,head);
		size ++;
	}

往链表中间插入元素(注:这个操作不是常用操作,练习用)
例如,往“索引”为2的位置插入元素:
注意,这里索引打了引号,因为链表其实不存在索引这个概念,如下图,其实就相当于在1这个元素后面插入一个666的元素:
在这里插入图片描述
那么我们的思路就是,想要插入这个666的元素,需要找到插入的位置的前一个节点的位置,让这个节点的next指向我要插入的新节点,然后新节点的next指向原来的前一个节点的next的节点。所以我们为了方便找到前一个节点的位置,我们定义一个prev变量,初始情况prev和head指向同一个位置,而后面通过将prev移动找到对应的插入的位置的前一个节点的位置:
在这里插入图片描述
所以我们的任务就是找到插入666之前的那个节点是谁。比如我们现在要插入的位置是“索引”为2,所以插入之前的“索引”为1,所以我们遍历一下,prev指向“索引”为1的位置,然后新的节点的next指向我们的原来“索引”为1的next,即“索引”为2的节点,然后将原来“索引”为1的next指向我们新的节点:
在这里插入图片描述

node.next = prev.next;
prev.next= node;

关键就是:找到要添加的节点的前一个节点
有些人可能会注意到,当我要把元素添加到索引为0的位置的时候,此时索引为0的位置是没有前一个元素的,我们需要特殊处理一下。
然后就是对于链表很重要的一点:顺序
如果我把上述操作倒过来:

prev.next= node;
node.next = prev.next;

那么就会出现Node的next指向Node自己的错误,所以顺序一定要注意。可以通过纸笔或者debug调试一下。那么我们的实现如下:

//在链表的Index(0-based)位置添加新的元素e
	public void add(T t, int index) {
		if (index < 0 || index > size) {
			throw new IllegalArgumentException("add element error:index should >= 0 && index <= size");
		}
		//如果Index = 0,由于索引为0的位置没有前一个元素,所以我们直接特殊处理,其实就相当于往头部添加元素
		if(index == 0){
			addFirst(t);
		}else {
			Node prev = head;
			for(int i = 0;i < index - 1;i ++){
				prev = prev.next;
			}
			Node node = new Node(t);
			node.next = prev.next;
			prev.next = node;
			size ++;
		}
	}

那么add完成了后,我们就可以很简单的完成再添加一个add方法了,就是向链表末尾添加一个元素addLast(),其实就是add方法的index传size即可:

public  void addLast(T t){
		add(t,size);
	}

那么以上就是链表的添加元素方法,但其实我们的add()仍然不够优雅,关键在于我们需要对Index=0的处理方法特殊处理,其实有一种方法可以直接让我们拜托这种特殊处理,就是设立虚拟head结点,这个我们后面会讲到:

四、为链表设立虚拟头结点

我们之前说add方法的时候,有一个不太优雅的地方就是当Index=0的时候,我们需要特殊处理,原因就是头结点没有上一个节点,那么解决思路也很简单,我们就造一个虚拟的链表头结点,它其实不存储任何的元素,我们将这个NULL节点称之为我们链表的head,也叫做dummyHead,即虚拟头结点。它其实就是索引为0对应的元素的前一个位置。那么这样添加,当index = 0时,就不需要特殊处理了。
在这里插入图片描述
且我们现在prev是从dummyHead开始,即索引为0对应的元素的前一个位置开始,那么我们其实我们不再需要遍历Index-1次,而直接遍历Index次就可以找到插入位置的前一个位置了,说白了就是我的起点往前挪了一个位置,那么我遍历次数自然就需要少1次
在这里插入图片描述
代码如下:

//在链表的Index(0-based)位置添加新的元素e
	public void add(T t, int index) {
		if (index < 0 || index > size) {
			throw new IllegalArgumentException("add element error:index should >= 0 && index <= size");
		}
		Node prev = dummyHead;
		for (int i = 0; i < index; i++) {
			prev = prev.next;
		}
		Node node = new Node(t);
		node.next = prev.next;
		prev.next = node;
		size++;
	}

那么反过来,我们的addFirst也可以通过add简化了:

	public void addFirst(T t) {
		//声明一个新的节点,将这个新节点指向我们的头结点,然后再让新的节点成为头结点
		add(t, 0);
	}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1025718.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

什么是智能推荐?智能推荐的原理是什么?

一、智能推荐的魔力 2020年的愚人节晚间&#xff0c;罗永浩在抖音带货&#xff0c;相信你也被刷屏了吧。3小时的直播过程中&#xff0c;22款产品轮番出场&#xff0c;最终首播支付交易总额突破1.1亿、整场直播观看总人数超过4800万、总销售件数逾91万&#xff0c;粉丝打赏音浪…

MySQL数据库查缺补漏——基础篇

MySQL数据库查缺补漏-基础篇 基础篇 net start mysql80[服务名] net stop mysql80 create database pshdhx default charset utf8mb4; 为什么不使用utf8&#xff1f;因为其字符占用三个字节&#xff0c;有四个字节的字符&#xff0c;所有需要设置为utf8mb4; 数值类型&…

免费获取独立ChatGPT账户!!

GPT对于每个科研人员已经成为不可或缺的辅助工具&#xff0c;不同的研究领域和项目具有不同的需求。如在科研编程、绘图领域&#xff1a;1、编程建议和示例代码: 无论你使用的编程语言是Python、R、MATLAB还是其他语言&#xff0c;都可以为你提供相关的代码示例。2、数据可视化…

无涯教程-JavaScript - TANH函数

描述 TANH函数返回数字的双曲正切。 语法 TANH (number)争论 Argument描述Required/OptionalNumberAny real number.Required Notes 双曲正切的公式为- $$TANH\left(z\right)\frac {SINH\left(z\right)} {COSH\left(z\right)} \frac {e ^ ze ^ {-z}} {e ^ z e ^ {-z}} …

企业AI机器人,客户服务的好帮手!

客户服务对于任何业务运营来说都是很重要的方面。它是企业与其客户之间的直接联系点&#xff0c;可以进行有效的沟通以及解决问题。良好的客户服务体验可以显著影响公司的声誉&#xff0c;从而提高客户满意度、留存率并最终实现收益增长。 很多企业想尽各种方法想要提供更好的…

如何玩转CSDN AI工具集

前言 人工智能生成内容&#xff08;AIGC&#xff09;是当下最具有前景的技术领域之一。AI能够以惊人的速度和准确度生成各种类型的内容&#xff0c;完成文章翻译、代码生成、AI对话、插图创作等工作&#xff0c;带来了许多令人兴奋的机遇。 本文将介绍CSDN AI工具集的基本使用…

9.4.1网站编写(Tomcat和servlet基础)

一.Tomcat: 1.Tomcat是java写的,运行时需要依赖jre,所以要装jdk. 2.建议配置好环境变量. 3.默认端口号8080(业务端口)可能会被占用,建议改一下(本人改成了9999). 4.另一个默认端口是8005(管理端口). 二Servlet基础(编写一个hello world代码): 整体分为7个步骤,分别是创建…

力扣:104. 二叉树的最大深度(Python3)

题目&#xff1a; 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱…

使用FileZilla连接本地和服务器进行文件传输

项目场景&#xff1a; 使用FileZilla连接本地和服务器进行文件传输 问题描述 使用FileZilla连接本地和服务器进行文件传输出现150或425 原因分析&#xff1a; 1.防火墙是否开放端口 2.公共ip或账号密码是否正确 解决方案&#xff1a; 从配置到解决问题的步骤 1.下载安装F…

IC修真院 | 业内首个模拟流片项目重磅上线!

自从不久前IC修真院数字方向65nm流片项目上线&#xff0c;就开启了大家对模拟流片项目的“催更”日常。 这里放个口&#xff1a;了解流片项目实战 众所周知IC行业经验至上&#xff0c;其中模拟IC尤甚。 大多数同学在高校中并没有机会接触流片项目&#xff0c;更别说积累经验了…

D. The Enchanted Forest

Problem - D - Codeforces 思路&#xff1a;一直在正向的考虑&#xff0c;这个题从反向考虑更加容易&#xff0c;首先如果k>n的话&#xff0c;初始的一定都可以拿完&#xff0c;并且我们知道生长的蘑菇的总量是n*k个蘑菇&#xff0c;那么如果我们知道剩下了多少个蘑菇&#…

【Java 基础篇】深入理解 Java 管道(Pipes):从基础到高级

Java 管道&#xff08;Pipes&#xff09;是一种强大的工具&#xff0c;用于实现进程间通信&#xff08;Inter-Process Communication&#xff0c;IPC&#xff09;。在本文中&#xff0c;我们将深入探讨 Java 管道的各个方面&#xff0c;从基础概念到高级用法&#xff0c;旨在帮…

linux-crontab每分钟定时执行/定时任务调度

文章目录 一、前言二、crontab概述2.1、crontab命令简介2.2、linux定时任务分类 三、安装crontab四、crontab使用4.1、crontab语法4.2、定时任务设置4.3、定时任务格式4.4 crontab表达式在线验证 五、实例六、定时任务的日志 一、前言 本文讲解linux上如何调用定时任务&#x…

以太网ARP测试实验

1.1 ARP测试整体框架 当上位机发送ARP请求时&#xff0c;FPGA返回ARP应答数据&#xff1b;当按下FPGA的触摸按键时&#xff0c;FPGA发送ARP请求&#xff0c;上位机返回ARP应答数据。 PLL时钟对eth_rxc的输入时钟进行相位调整&#xff1b;GMII TO RGMI 模块负责将双沿(DDR)数据和…

树莓派安装mariadb

mariadb与mysql十分类似&#xff0c;他们的使用方法类似&#xff0c;默认端口也都是3306 文章参考 树莓派mysql安装配置 – 蒋智昊的博客 目录 1 树莓派系统情况 2 安装mariadb 3 启动数据库 4 设置数据库自启动 5 进入数据库 1 树莓派系统情况 用的是树莓派4&…

Linux性能调优 —— 内存篇

Linux性能调优 —— 内存篇 Linux内存的工作原理 内存映射的概念 虚存空间分布 内存分配与回收 分配 回收 内存查看与分析 查看内存使用情况 命令&#xff1a;free 命令&#xff1a;vmstat 命令&#xff1a;top 分析单个进程 命令&#xff1a;ps -p Linux内存的工作原理…

把api_key 设置成win10系统变量然后python调用

1 设置环境变量存储秘钥 将API密钥存储在环境变量中&#xff0c;而不是直接写在代码中&#xff0c;可以降低泄露密钥的风险。 新建系统变量&#xff1a; 变量名&#xff1a;OPENAI_API_KEY 变量值&#xff1a;OpenAI API秘钥(上一步复制的那个key) 2获取值 import openai i…

torch.cuda.is_available() 在有的项目中返回True有的返回Flase

问题描述&#xff0c;刚下了一个项目&#xff0c;不能用CUDA 同一个环境不同项目中 torch.cuda.is_available() 返回值不同 问题来源&#xff1a; 这里的运行配置有问题 选择编辑配置并修改对应的解释器 查看 和 是否对应。 import torch print(torch.__version__) prin…

iOS蓝牙 Connection Parameters 关键参数说明

1. 先贴苹果文档 《 Accessory Design Guidelines for Apple Devices 》 2. 几个关键词 connection Event Interval 事件间隔&#xff0c;为1.25ms的倍数。可以简单理解为,是两个连接着的蓝牙设备发送“心跳包”的时间间隔&#xff1b; 范围是 6 ~ 3200&#xff0c;即 7.5…

运算符超详细讲解(系统性学习day5)

目录 前言 一、运算符的概念与分类 二、算术运算符 三、关系运算符 四、逻辑运算符 五、赋值运算符 六、运算符的优先级 总结 前言 本篇文章是对运算符的具体讲解。 一、运算符的概念与分类 概念&#xff1a; 运算符就是一种告诉编译器执行特定的数学或逻辑操作的符…