卷积神经网络-高级篇Advanced-CNN
在基础篇中我们学习了一个简单的CNN
下面介绍其他几个网络结构
GoogLeNet
蓝色为卷积,红色是池化,黄色是softmax输出,绿色是一些拼接层。
在这个大型的网络结构中我们需要做到的是减少代码冗余(函数、类)
在这个网络结构中有很多相同重复得层,我们可以封装称为一个类
在GoogLeNet中把这样一些层叫做Inception
Inception概念
Inception就是把多个卷积或池化操作,放在一起组装成一个网络模块,设计神经网络时以模块为单位去组装整个网络结构。模块如下图所示
在未使用这种方式的网络里,我们一层往往只使用一种操作,比如卷积或者池化,而且卷积操作的卷积核尺寸也是固定大小的。但是,在实际情况下,在不同尺度的图片里,需要不同大小的卷积核,这样才能使性能最好,或者或,对于同一张图片,不同尺寸的卷积核的表现效果是不一样的,因为他们的感受野不同。所以,我们希望让网络自己去选择,Inception便能够满足这样的需求,一个Inception模块中并列提供多种卷积核的操作,网络在训练的过程中通过调节参数自己去选择使用,同时,由于网络中都需要池化操作,所以此处也把池化层并列加入网络中。
其中Concatenate是把张量拼接在一块,四条路径会产生四个张量,沿着通道拼起来
Average Pooling(平均池化):可以通过设置padding和stride来保证输入输出的大小是一致的
https://blog.csdn.net/u013289254/article/details/99080916
1*1Conv层表示将来的卷积核就是1*1的,他的个数取决于输入张量的通道。
比如有一个3*W*H的图像,通过1*1Conv层都变成1*W*H的feature map
他的作用主要有以下三方面:
- 跨通道的特征整合
- 特征通道的升维和降维
- 减少卷积核参数(简化模型)
https://blog.csdn.net/nefetaria/article/details/107977597
以下图为例,我们可以看到,计算量明显减少。
Inception实现
我们用代码来实现Inception
代码说明:
在池化分支中首先使用average pooling,在对他进行1*1卷积
在1*1分支中直接创建一个1*1的卷积
在5*5分支中有两个模块,第一个是1*1的卷积,第二个模块是5*5的卷积
在3*3分支中包含了三个模块
整体的代码结构如下
最后我们需要把这一整块进行拼接Concatenate
拼接Concatenate代码如下
我们要沿着(B,C,W,H)中dim=1,就是通道的维数拼起来
我们把上面的代码进行整合就可以得到一个Inception类,在这个类中并没有把输入通道写死,说明可以在构造网络中作为参数输入
网络模型代码如下:
先是1个卷积层(conv,maxpooling,relu),然后inceptionA模块(输出的channels是24+16+24+24=88),接下来又是一个卷积层(conv,maxpooling,relu),然后inceptionA模块,最后一个全连接层(fc)。
1408这个数据可以通过x = x.view(in_size, -1)后调用x.shape得到。
模型实验
我们把这个Inception模型放入Mnist数据集中进行实验
代码演示
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class InceptionA(torch.nn.Module):
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2)
self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1)
self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1) # b,c,w,h c对应的是dim=1
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16
self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408, 10)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.mp(self.conv1(x)))
x = self.incep1(x)
x = F.relu(self.mp(self.conv2(x)))
x = self.incep2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 获得一个批次的数据和标签
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度
total += labels.size(0)
correct += (predicted == labels).sum().item() # 张量之间的比较运算
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
结果演示
[1, 300] loss: 0.861
[1, 600] loss: 0.222
[1, 900] loss: 0.155
accuracy on test set: 95 %
[2, 300] loss: 0.115
[2, 600] loss: 0.099
[2, 900] loss: 0.084
accuracy on test set: 97 %
[3, 300] loss: 0.074
[3, 600] loss: 0.074
[3, 900] loss: 0.073
accuracy on test set: 98 %
[4, 300] loss: 0.058
[4, 600] loss: 0.062
[4, 900] loss: 0.059
accuracy on test set: 98 %
[5, 300] loss: 0.050
[5, 600] loss: 0.055
[5, 900] loss: 0.054
accuracy on test set: 98 %
[6, 300] loss: 0.047
[6, 600] loss: 0.048
[6, 900] loss: 0.046
accuracy on test set: 98 %
[7, 300] loss: 0.042
[7, 600] loss: 0.043
[7, 900] loss: 0.043
accuracy on test set: 98 %
[8, 300] loss: 0.039
[8, 600] loss: 0.040
[8, 900] loss: 0.038
accuracy on test set: 98 %
[9, 300] loss: 0.035
[9, 600] loss: 0.034
[9, 900] loss: 0.038
accuracy on test set: 98 %
[10, 300] loss: 0.032
[10, 600] loss: 0.032
[10, 900] loss: 0.033
accuracy on test set: 98 %
结果如下
ResidualNet(ResNet)
随着网络结构的加深,带来了两个问题:
- 一是vanishing/exploding gradient,导致了训练十分难收敛,这类问题能够通过normalized initialization 和intermediate normalization layers解决;
- 另一个是被称为degradation的退化现象。对合适的深度模型继续增加层数,模型准确率会下滑(不是overfit造成),training error和test error都会很高,相应的现象在CIFAR-10和ImageNet都有出现。
https://blog.csdn.net/u011808673/article/details/78836617
残差结构
可以看到普通直连的卷积神经网络和 ResNet 的最大区别在于,ResNet 有很多旁路的支线将输入直接连到后面的层,使得后面的层可以直接学习残差,这种结构也被称为 shortcut connections。传统的卷积层或全连接层在信息传递时,或多或少会存在信息丢失、损耗等问题。ResNet 在某种程度上解决了这个问题,通过直接将输入信息绕道传到输出,保护信息的完整性,整个网络则只需要学习输入、输出差别的那一部分,简化学习目标和难度。 同时34层 residual network 取消了最后几层 FC,通过 avg pool 直接接输出通道为1000的 Softmax,使得 ResNet 比16-19层 VGG 的计算量还低。 注意:实现部分是深度未发生变化的连接,虚线部分是深度发生变化的连接。 对应深度有变化的连接有两种解决方案:
- 使用 zero-pading 进行提升深度 parameter-free。
- 使用 1*1的卷积核提升维度 有卷积核的运算时间。
两种方法,使用下面一种方法效果更好,但是运行会更耗时,一般还是更倾向于第一种方案节约运算成本。
残差块
在正常的神经网络中就是一层连一层
在ResNet中,假定某段神经网络的输入是 x,期望输出是 H(x),即 H(x) 是期望的复杂潜在映射,但学习难度大;如果我们直接把输入 x 传到输出作为初始结果,通过下图“shortcut connections”,那么此时我们需要学习的目标就是 F(x)=H(x)-x,于是 ResNet 相当于将学习目标改变了,不再是学习一个完整的输出,而是最优解 H(X) 和全等映射 x 的差值,即残差 F(x) = H(x) - x;
ResNet shortcut 没有权值,传递 x 后每个模块只学习残差F(x),且网络稳定易于学习,同时证明了随着网络深度的增加,性能将逐渐变好。可以推测,当网络层数够深时,优化 Residual Function:F(x)=H(x)−x,易于优化一个复杂的非线性映射 H(x)。
ResNet网络结构
Residual Block 实现
值得注意的是,我们需要输入通道和输出通道一致
第一层中先做卷积在做relu(conv1(x)),第二层中做卷积conv2(y),最后返回relu(x+y)
ResNet代码实现
代码演示
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class ResidualBlock(torch.nn.Module):
def __init__(self,channels):
super(ResidualBlock, self).__init__()
self.channels = channels
self.conv1 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(channels, channels, kernel_size=3, padding=1)
def forward(self,x):
y = F.relu(self.conv1(x))
y = self.conv2(y)
return F.relu(x+y)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
self.mp = torch.nn.MaxPool2d(2)
self.rBlock1 = ResidualBlock(16)
self.rBlock2 = ResidualBlock(32)
self.fc = torch.nn.Linear(512,10)
def forward(self, x):
in_size = x.size(0)
x = self.mp(F.relu(self.conv1(x)))
x = self.rBlock1(x)
x = self.mp(F.relu(self.conv2(x)))
x = self.rBlock2(x)
x = x.view(in_size, -1)
x = self.fc(x)
return x
model = Net()
# 使用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 获得一个批次的数据和标签
inputs, target = data
# 使用GPU
inputs, target = inputs.to(device), target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
# 使用GPU
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1) # dim = 1 列是第0个维度,行是第1个维度
total += labels.size(0)
correct += (predicted == labels).sum().item() # 张量之间的比较运算
print('accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
输出结果
[1, 300] loss: 0.085
[1, 600] loss: 0.025
[1, 900] loss: 0.018
accuracy on test set: 97 % [9728/10000]
[2, 300] loss: 0.014
[2, 600] loss: 0.013
[2, 900] loss: 0.011
accuracy on test set: 97 % [9781/10000]
[3, 300] loss: 0.009
[3, 600] loss: 0.009
[3, 900] loss: 0.009
accuracy on test set: 98 % [9842/10000]
[4, 300] loss: 0.007
[4, 600] loss: 0.007
[4, 900] loss: 0.007
accuracy on test set: 98 % [9868/10000]
[5, 300] loss: 0.006
[5, 600] loss: 0.006
[5, 900] loss: 0.006
accuracy on test set: 98 % [9898/10000]
[6, 300] loss: 0.006
[6, 600] loss: 0.005
[6, 900] loss: 0.005
accuracy on test set: 98 % [9896/10000]
[7, 300] loss: 0.005
[7, 600] loss: 0.005
[7, 900] loss: 0.005
accuracy on test set: 98 % [9896/10000]
[8, 300] loss: 0.004
[8, 600] loss: 0.004
[8, 900] loss: 0.004
accuracy on test set: 99 % [9906/10000]
[9, 300] loss: 0.004
[9, 600] loss: 0.004
[9, 900] loss: 0.004
accuracy on test set: 99 % [9913/10000]
[10, 300] loss: 0.003
[10, 600] loss: 0.003
[10, 900] loss: 0.004
accuracy on test set: 99 % [9909/10000]