day21算法

news2025/1/15 3:03:57

常见的七种查找算法:

​ 数据结构是数据存储的方式,算法是数据计算的方式。所以在开发中,算法和数据结构息息相关。今天的讲义中会涉及部分数据结构的专业名词,如果各位铁粉有疑惑,可以先看一下哥们后面录制的数据结构,再回头看算法。

1. 基本查找

​ 也叫做顺序查找

​ 说明:顺序查找适合于存储结构为数组或者链表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。

示例代码:

public class A01_BasicSearchDemo1 {
    public static void main(String[] args) {
        //基本查找/顺序查找
        //核心:
        //从0索引开始挨个往后查找

        //需求:定义一个方法利用基本查找,查询某个元素是否存在
        //数据如下:{131, 127, 147, 81, 103, 23, 7, 79}


        int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};
        int number = 82;
        System.out.println(basicSearch(arr, number));

    }

    //参数:
    //一:数组
    //二:要查找的元素

    //返回值:
    //元素是否存在
    public static boolean basicSearch(int[] arr, int number){
        //利用基本查找来查找number在数组中是否存在
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] == number){
                return true;
            }
        }
        return false;
    }
}

2. 二分查找

​ 也叫做折半查找

说明:元素必须是有序的,从小到大,或者从大到小都是可以的。

如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。

基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:

  • 相等

    说明找到了

  • 要查找的数据比中间节点小

    说明要查找的数字在中间节点左边

  • 要查找的数据比中间节点大

    说明要查找的数字在中间节点右边

代码示例:

package com.itheima.search;

public class A02_BinarySearchDemo1 {
    public static void main(String[] args) {
        //二分查找/折半查找
        //核心:
        //每次排除一半的查找范围

        //需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
        //数据如下:{7, 23, 79, 81, 103, 127, 131, 147}

        int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};
        System.out.println(binarySearch(arr, 150));
    }

    public static int binarySearch(int[] arr, int number){
        //1.定义两个变量记录要查找的范围
        int min = 0;
        int max = arr.length - 1;

        //2.利用循环不断的去找要查找的数据
        while(true){
            if(min > max){
                return -1;
            }
            //3.找到min和max的中间位置
            int mid = (min + max) / 2;
            //4.拿着mid指向的元素跟要查找的元素进行比较
            if(arr[mid] > number){
                //4.1 number在mid的左边
                //min不变,max = mid - 1;
                max = mid - 1;
            }else if(arr[mid] < number){
                //4.2 number在mid的右边
                //max不变,min = mid + 1;
                min = mid + 1;
            }else{
                //4.3 number跟mid指向的元素一样
                //找到了
                return mid;
            }

        }
    }
}

3. 插值查找

在介绍插值查找之前,先考虑一个问题:

​ 为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?

其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?

二分查找中查找点计算如下:

mid=(low+high)/2, 即mid=low+1/2*(high-low);

我们可以将查找的点改进为如下:

mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

**细节:**对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

代码跟二分查找类似,只要修改一下mid的计算方式即可。

4. 斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….

(从第三个数开始,后边每一个数都是前两个数的和)。

然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

img

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可

代码示例:

public class FeiBoSearchDemo {
    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 8, 10, 89, 1000, 1234};
        System.out.println(search(arr, 1234));
    }

    public static int[] getFeiBo() {
        int[] arr = new int[maxSize];
        arr[0] = 1;
        arr[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            arr[i] = arr[i - 1] + arr[i - 2];
        }
        return arr;
    }

    public static int search(int[] arr, int key) {
        int low = 0;
        int high = arr.length - 1;
        //表示斐波那契数分割数的下标值
        int index = 0;
        int mid = 0;
        //调用斐波那契数列
        int[] f = getFeiBo();
        //获取斐波那契分割数值的下标
        while (high > (f[index] - 1)) {
            index++;
        }
        //因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
        int[] temp = Arrays.copyOf(arr, f[index]);
        //实际需要使用arr数组的最后一个数来填充不足的部分
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = arr[high];
        }
        //使用while循环处理,找到key值
        while (low <= high) {
            mid = low + f[index - 1] - 1;
            if (key < temp[mid]) {//向数组的前面部分进行查找
                high = mid - 1;
                /*
                  对k--进行理解
                  1.全部元素=前面的元素+后面的元素
                  2.f[k]=k[k-1]+f[k-2]
                  因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
                  即在f[k-1]的前面继续查找k--
                  即下次循环,mid=f[k-1-1]-1
                 */
                index--;
            } else if (key > temp[mid]) {//向数组的后面的部分进行查找
                low = mid + 1;
                index -= 2;
            } else {//找到了
                //需要确定返回的是哪个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}

5. 分块查找

当数据表中的数据元素很多时,可以采用分块查找。

汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找

分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找

分块查找的过程:

  1. 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
  2. 给每一块创建对象单独存储到数组当中
  3. 查找数据的时候,先在数组查,当前数据属于哪一块
  4. 再到这一块中顺序查找

代码示例:

package com.itheima.search;

public class A03_BlockSearchDemo {
    public static void main(String[] args) {
        /*
            分块查找
            核心思想:
                块内无序,块间有序
            实现步骤:
                1.创建数组blockArr存放每一个块对象的信息
                2.先查找blockArr确定要查找的数据属于哪一块
                3.再单独遍历这一块数据即可
        */
        int[] arr = {16, 5, 9, 12,21, 18,
                     32, 23, 37, 26, 45, 34,
                     50, 48, 61, 52, 73, 66};

        //创建三个块的对象
        Block b1 = new Block(21,0,5);
        Block b2 = new Block(45,6,11);
        Block b3 = new Block(73,12,17);

        //定义数组用来管理三个块的对象(索引表)
        Block[] blockArr = {b1,b2,b3};

        //定义一个变量用来记录要查找的元素
        int number = 37;

        //调用方法,传递索引表,数组,要查找的元素
        int index = getIndex(blockArr,arr,number);

        //打印一下
        System.out.println(index);



    }

    //利用分块查找的原理,查询number的索引
    private static int getIndex(Block[] blockArr, int[] arr, int number) {
        //1.确定number是在那一块当中
        int indexBlock = findIndexBlock(blockArr, number);

        if(indexBlock == -1){
            //表示number不在数组当中
            return -1;
        }

        //2.获取这一块的起始索引和结束索引   --- 30
        // Block b1 = new Block(21,0,5);   ----  0
        // Block b2 = new Block(45,6,11);  ----  1
        // Block b3 = new Block(73,12,17); ----  2
        int startIndex = blockArr[indexBlock].getStartIndex();
        int endIndex = blockArr[indexBlock].getEndIndex();

        //3.遍历
        for (int i = startIndex; i <= endIndex; i++) {
            if(arr[i] == number){
                return i;
            }
        }
        return -1;
    }


    //定义一个方法,用来确定number在哪一块当中
    public static int findIndexBlock(Block[] blockArr,int number){ //100


        //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的
        for (int i = 0; i < blockArr.length; i++) {
            if(number <= blockArr[i].getMax()){
                return i;
            }
        }
        return -1;
    }



}

class Block{
    private int max;//最大值
    private int startIndex;//起始索引
    private int endIndex;//结束索引


    public Block() {
    }

    public Block(int max, int startIndex, int endIndex) {
        this.max = max;
        this.startIndex = startIndex;
        this.endIndex = endIndex;
    }

    /**
     * 获取
     * @return max
     */
    public int getMax() {
        return max;
    }

    /**
     * 设置
     * @param max
     */
    public void setMax(int max) {
        this.max = max;
    }

    /**
     * 获取
     * @return startIndex
     */
    public int getStartIndex() {
        return startIndex;
    }

    /**
     * 设置
     * @param startIndex
     */
    public void setStartIndex(int startIndex) {
        this.startIndex = startIndex;
    }

    /**
     * 获取
     * @return endIndex
     */
    public int getEndIndex() {
        return endIndex;
    }

    /**
     * 设置
     * @param endIndex
     */
    public void setEndIndex(int endIndex) {
        this.endIndex = endIndex;
    }

    public String toString() {
        return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";
    }
}

6. 哈希查找

哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。

一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体

在课程中,为了让大家方便理解,所以规定:

  • 数组的0索引处存储1~100
  • 数组的1索引处存储101~200
  • 数组的2索引处存储201~300
  • 以此类推

但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。

更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。

具体的过程,大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了哈希表的数据结构。全程采取动画形式讲解,让大家一目了然。

在此不多做阐述。

7. 树表查找

本知识点涉及到数据结构:树。

建议先看一下后面阿玮讲解的数据结构,再回头理解。

基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:

1)若任意节点左子树上所有的数据,均小于本身;

2)若任意节点右子树上所有的数据,均大于本身;

二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

​ 不同形态的二叉查找树如下图所示:

在这里插入图片描述

基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。

具体细节大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了树数据结构。全程采取动画形式讲解,让大家一目了然。

在此不多做阐述。

​ 不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高

十大排序算法:

1. 冒泡排序

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。

这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。

当然,大家可以按照从大到小的方式进行排列。

1.1 算法步骤

  1. 相邻的元素两两比较,大的放右边,小的放左边
  2. 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
  3. 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以

1.2 动图演示

在这里插入图片描述

1.3 代码示例

public class A01_BubbleDemo {
    public static void main(String[] args) {
        /*
            冒泡排序:
            核心思想:
            1,相邻的元素两两比较,大的放右边,小的放左边。
            2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。
            3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。
        */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};

        //2.利用冒泡排序将数组中的数据变成 1 2 3 4 5

        //外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮
        for (int i = 0; i < arr.length - 1; i++) {
            //内循环:每一轮中我如何比较数据并找到当前的最大值
            //-1:为了防止索引越界
            //-i:提高效率,每一轮执行的次数应该比上一轮少一次。
            for (int j = 0; j < arr.length - 1 - i; j++) {
                //i 依次表示数组中的每一个索引:0 1 2 3 4
                if(arr[j] > arr[j + 1]){
                    int temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }

        printArr(arr);




    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }
}

2. 选择排序

2.1 算法步骤

  1. 从0索引开始,跟后面的元素一一比较
  2. 小的放前面,大的放后面
  3. 第一次循环结束后,最小的数据已经确定
  4. 第二次循环从1索引开始以此类推
  5. 第三轮循环从2索引开始以此类推
  6. 第四轮循环从3索引开始以此类推。

2.2 动图演示

在这里插入图片描述

public class A02_SelectionDemo {
    public static void main(String[] args) {

        /*
            选择排序:
                1,从0索引开始,跟后面的元素一一比较。
                2,小的放前面,大的放后面。
                3,第一次循环结束后,最小的数据已经确定。
                4,第二次循环从1索引开始以此类推。

         */


        //1.定义数组
        int[] arr = {2, 4, 5, 3, 1};


        //2.利用选择排序让数组变成 1 2 3 4 5
       /* //第一轮:
        //从0索引开始,跟后面的元素一一比较。
        for (int i = 0 + 1; i < arr.length; i++) {
            //拿着0索引跟后面的数据进行比较
            if(arr[0] > arr[i]){
                int temp = arr[0];
                arr[0] = arr[i];
                arr[i] = temp;
            }
        }*/

        //最终代码:
        //外循环:几轮
        //i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换
        for (int i = 0; i < arr.length -1; i++) {
            //内循环:每一轮我要干什么事情?
            //拿着i跟i后面的数据进行比较交换
            for (int j = i + 1; j < arr.length; j++) {
                if(arr[i] > arr[j]){
                    int temp = arr[i];
                    arr[i] = arr[j];
                    arr[j] = temp;
                }
            }
        }


        printArr(arr);


    }
    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

3. 插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。

插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找

3.1 算法步骤

将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。

遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。

N的范围:0~最大索引

3.2 动图演示

在这里插入图片描述

package com.itheima.mysort;


public class A03_InsertDemo {
    public static void main(String[] args) {
        /*
            插入排序:
                将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
                遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
                N的范围:0~最大索引

        */
        int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};

        //1.找到无序的哪一组数组是从哪个索引开始的。  2
        int startIndex = -1;
        for (int i = 0; i < arr.length; i++) {
            if(arr[i] > arr[i + 1]){
                startIndex = i + 1;
                break;
            }
        }

        //2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素
        for (int i = startIndex; i < arr.length; i++) {
            //问题:如何把遍历到的数据,插入到前面有序的这一组当中

            //记录当前要插入数据的索引
            int j = i;

            while(j > 0 && arr[j] < arr[j - 1]){
                //交换位置
                int temp = arr[j];
                arr[j] = arr[j - 1];
                arr[j - 1] = temp;
                j--;
            }

        }
        printArr(arr);
    }

    private static void printArr(int[] arr) {
        //3.遍历数组
        for (int i = 0; i < arr.length; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.println();
    }

}

4. 快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。

快速排序又是一种分而治之思想在排序算法上的典型应用。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!

它是处理大数据最快的排序算法之一了。

4.1 算法步骤

  1. 从数列中挑出一个元素,一般都是左边第一个数字,称为 “基准数”;
  2. 创建两个指针,一个从前往后走,一个从后往前走。
  3. 先执行后面的指针,找出第一个比基准数小的数字
  4. 再执行前面的指针,找出第一个比基准数大的数字
  5. 交换两个指针指向的数字
  6. 直到两个指针相遇
  7. 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
  8. 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
  9. 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序

4.2 动图演示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

package com.itheima.mysort;

import java.util.Arrays;

public class A05_QuickSortDemo {
   public static void main(String[] args) {
       System.out.println(Integer.MAX_VALUE);
       System.out.println(Integer.MIN_VALUE);
     /*
       快速排序:
           第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。
           比基准数小的全部在左边,比基准数大的全部在右边。
           后面以此类推。
     */

       int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};


       //int[] arr = new int[1000000];

      /* Random r = new Random();
       for (int i = 0; i < arr.length; i++) {
           arr[i] = r.nextInt();
       }*/


       long start = System.currentTimeMillis();
       quickSort(arr, 0, arr.length - 1);
       long end = System.currentTimeMillis();

       System.out.println(end - start);//149

       System.out.println(Arrays.toString(arr));
       //课堂练习:
       //我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率
       //得到一个结论:快速排序真的非常快。

      /* for (int i = 0; i < arr.length; i++) {
           System.out.print(arr[i] + " ");
       }*/

   }


   /*
    *   参数一:我们要排序的数组
    *   参数二:要排序数组的起始索引
    *   参数三:要排序数组的结束索引
    * */
   public static void quickSort(int[] arr, int i, int j) {
       //定义两个变量记录要查找的范围
       int start = i;
       int end = j;

       if(start > end){
           //递归的出口
           return;
       }



       //记录基准数
       int baseNumber = arr[i];
       //利用循环找到要交换的数字
       while(start != end){
           //利用end,从后往前开始找,找比基准数小的数字
           //int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};
           while(true){
               if(end <= start || arr[end] < baseNumber){
                   break;
               }
               end--;
           }
           System.out.println(end);
           //利用start,从前往后找,找比基准数大的数字
           while(true){
               if(end <= start || arr[start] > baseNumber){
                   break;
               }
               start++;
           }



           //把end和start指向的元素进行交换
           int temp = arr[start];
           arr[start] = arr[end];
           arr[end] = temp;
       }

       //当start和end指向了同一个元素的时候,那么上面的循环就会结束
       //表示已经找到了基准数在数组中应存入的位置
       //基准数归位
       //就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
       int temp = arr[i];
       arr[i] = arr[start];
       arr[start] = temp;

       //确定6左边的范围,重复刚刚所做的事情
       quickSort(arr,i,start - 1);
       //确定6右边的范围,重复刚刚所做的事情
       quickSort(arr,start + 1,j);

   }
}

}
end–;
}
System.out.println(end);
//利用start,从前往后找,找比基准数大的数字
while(true){
if(end <= start || arr[start] > baseNumber){
break;
}
start++;
}

        //把end和start指向的元素进行交换
        int temp = arr[start];
        arr[start] = arr[end];
        arr[end] = temp;
    }

    //当start和end指向了同一个元素的时候,那么上面的循环就会结束
    //表示已经找到了基准数在数组中应存入的位置
    //基准数归位
    //就是拿着这个范围中的第一个数字,跟start指向的元素进行交换
    int temp = arr[i];
    arr[i] = arr[start];
    arr[start] = temp;

    //确定6左边的范围,重复刚刚所做的事情
    quickSort(arr,i,start - 1);
    //确定6右边的范围,重复刚刚所做的事情
    quickSort(arr,start + 1,j);

}

}




其他排序方式待更新~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1017838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu不能上网解决办法

问题及现象 Ubuntu的虚拟机&#xff08;18.04&#xff09;总是莫名就不能上网了。 使用ifconfig -a 查看&#xff0c;ensxx&#xff08;xx为虚拟机分配的id号&#xff09;对应的网卡有mac地址&#xff0c;但是没有分配ip地址。 Network中也没有Wired的选项。 临时解决方案 使…

深入学习 Redis Cluster - 集群缩容(全网最详细)

目录 一、集群缩容 1.1、准备环境 1.2、第一步&#xff0c;删除从节点 1.3、第二步&#xff0c;重新分配 slots 第一次分配&#xff1a;分配给 106 1365 个 slots 第二次分配&#xff1a;分配给102 1365 个 slots 此时查看集群状态&#xff0c;可以看到 110 节点不再持有…

【技术分享】NetLogon于域内提权漏洞(CVE-2020-1472)

一、漏洞介绍 CVE-2020-1472是一个Windows域控中严重的远程权限提升漏洞。攻击者在通过NetLogon&#xff08;MS-NRPC&#xff09;协议与AD域控建立安全通道时&#xff0c;可利用该漏洞将AD域控的计算机账号密码置为空&#xff0c;从而控制域控服务器。该漏洞适用于Win2008及后…

C#实现钉钉自定义机器人发送群消息帮助类

一、自定义机器人发送群消息使用场景 在企业中,针对一些关键指标内容(如每天的生产产量、每天的设备报警信息等信息),需要同时给多人分享,此时就可以将需要查看这些数据的人员都拉到一个群中,让群里的机器人将这些关键指标内容推送到群里即可【(目前已实现在钉钉群里创建…

Pytorch-CNN-Mnist

文章目录 model.pymain.py网络设置注意事项及改进运行截图 model.py import torch.nn as nn class CNN_cls(nn.Module):def __init__(self,in_dim28*28):super(CNN_cls,self).__init__()self.conv1 nn.Conv2d(1,32,1,1)self.pool1 nn.MaxPool2d(2,2)self.conv2 nn.Conv2d(3…

2023上半年软件设计师上午题目总结

1 在计算机中系统总线用于连接 主存及外设部件 2 在由高速缓存、主存、硬盘构成的三级存储体系中&#xff0c;CPU执行指令时需要读取数据&#xff0c;DMA控制器和中断CPU发出的数据地址是 主存物理地址 。 DMA&#xff08;Direct Memory Access&#xff09;控制器是计算机硬…

Nacos深入原理从源码层面讲解

文章目录 1 Nacos原理1.1 Nacos架构1.2 注册中心原理1.3 SpringCloud服务注册1.4 NacosServiceRegistry实现1.4.1 心跳机制1.4.2 注册原理1.4.3 总结 1.5 服务提供者地址查询1.6 Nacos服务地址动态感知原理 1 Nacos原理 1.1 Nacos架构 Provider APP&#xff1a;服务提供者Cons…

STM32 学习笔记1:STM32简介

1 概述 STM32&#xff0c;从字面上来理解&#xff0c;ST 是意法半导体&#xff0c;M 是 Microelectronics 的缩写&#xff0c;32 表示 32 位&#xff0c;合起来理解&#xff0c;STM32 就是 ST 公司开发的 32 位微控制器。是一款基于 ARM 公司推出的基于 ARMv7 架构的 32 位 Co…

【详细教程hexo博客搭建】1、从零开始搭建一个能用的博客

1、开始 2.环境与工具准备 本教程主要面对的是Windows用户 操作系统&#xff1a;Windows10NodeGitHexo文本编辑器(强烈推荐VSCODE)GitHub 帐号一个域名&#xff08;强烈推荐买个域名&#xff09;云服务器&#xff08;可选&#xff09; 3.Node的安装 打开Node官网&#xff0…

vivo数据中心网络链路质量监测的探索实践

作者&#xff1a;vivo 互联网服务器团队- Wang Shimin 网络质量监测中心是一个用于数据中心网络延迟测量和分析的大型系统。通过部署在服务器上的Agent发起5次ICMP Ping以获取端到端之间的网络延迟和丢包率并推送到存储与分析模块进行聚合和分析与存储。控制器负责分发PingList…

【大数据】Neo4j 图数据库使用详解

目录 一、图数据库介绍 1.1 什么是图数据库 1.2 为什么需要图数据库 1.3 图数据库应用领域 二、图数据库Neo4j简介 2.1 Neo4j特性 2.2 Neo4j优点 三、Neo4j数据模型 3.1 图论基础 3.2 属性图模型 3.3 Neo4j的构建元素 3.3.1 节点 3.3.2 属性 3.3.3 关系 3.3.4 标…

JS生成器的介绍

1、 什么是生成器 生成器是ES6中新增的一种函数控制、使用的方案&#xff0c;它可以让我们更加灵活的控制函数什么时候继续执行、暂停执行等。 平时我们会编写很多的函数&#xff0c;这些函数终止的条件通常是返回值或者发生了异常。 生成器函数也是一个函数&#xff0c;但是…

阿里云无影云电脑是干什么用的?五大使用场景

阿里云无影云电脑是一种易用、安全、高效的云上桌面服务&#xff0c;阿里云无影云电脑可用于高数据安全管控、高性能计算等要求的金融、设计、视频、教育等领域&#xff0c;适用于多种办公场景&#xff0c;如远程办公、多分支机构、安全OA、短期使用、专业制图等。阿里云百科来…

【LeetCode热题100】--49.字母异位词分组

49.字母异位词分组 两个字符串互为字母异位词&#xff0c;当且仅当两个字符串包含的字母相同。同一组字母异位词中的字符串具备相同点&#xff0c;可以使用相同点作为一组字母异位词的标志&#xff0c;使用哈希表存储每一组字母异位词&#xff0c;哈希表的键为一组字母异位词的…

DockerCompose

DockerCompose Docker Compose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器&#xff01; 初识DockerCompose Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。格式如下&#xff1a; version: &…

[golang 流媒体在线直播系统] 4.真实RTMP推流摄像头把摄像头拍摄的信息发送到腾讯云流媒体服务器实现直播

用RTMP推流摄像头把摄像头拍摄的信息发送到腾讯云流媒体服务器实现直播,该功能适用范围广,比如:幼儿园直播、农场视频直播, 一.准备工作 要实现上面的功能,需要准备如下设备: 推流摄像机&#xff08;监控&#xff09; 流媒体直播服务器(腾讯云流媒体服务器,自己搭建的流媒体服务…

React中组件通信01——props

React中组件通信01——props 1. 父传子——props1.1 简单例子——props1.2 props 可以传递任何数据1.2.1 传递数字、对象等1.2.2 传递函数1.2.3 传递模版jsx 2. 子传父 子传子——props2.1 父传子——传递函数2.2 子传父——通过父传子的函数实现2.3 优化 子传子&#xff08;…

uniapp开发小程序中实现骨架屏

第一步&#xff1a;小程序中实现骨架屏在微信开发者工具中点击生成骨架屏&#xff1a; 第二步&#xff1a;复制html代码&#xff0c;到骨架屏vue组件汇中再把之前写的样式代码引入进去&#xff1a; import ../../pages/user/user.css; 第三步&#xff1a;组件中引入骨架屏&am…

python pytesseract 中文文字批量识别

用pytesseract 来批量把图片转成文字 1、安装好 pytesseract 包 2、下载安装OCR https://download.csdn.net/download/m0_37622302/88348824https://download.csdn.net/download/m0_37622302/88348824 Index of /tesseracthttps://digi.bib.uni-mannheim.de/tesseract/ 我是…

百度SEO优化TDK介绍(分析下降原因并总结百度优化SEO策略)

TDK是SEO优化中很重要的部分&#xff0c;包括标题&#xff08;Title&#xff09;、描述&#xff08;Description&#xff09;和关键词&#xff08;Keyword&#xff09;&#xff0c;为百度提供网页内容信息。其中标题是最重要的&#xff0c;应尽量突出关键词&#xff0c;同时描述…