数据分享|R语言逻辑回归、线性判别分析LDA、GAM、MARS、KNN、QDA、决策树、随机森林、SVM分类葡萄酒交叉验证ROC...

news2024/11/13 16:21:47

全文链接:http://tecdat.cn/?p=27384

在本文中,数据包含有关葡萄牙“Vinho Verde”葡萄酒的信息点击文末“阅读原文”获取完整代码数据

介绍

该数据集(查看文末了解数据获取方式)有1599个观测值和12个变量,分别是固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH值、硫酸盐、酒精和质量。固定酸度、挥发性酸度、柠檬酸、残糖、氯化物、游离二氧化硫、总二氧化硫、密度、pH、硫酸盐和酒精是自变量并且是连续的。质量是因变量,根据 0 到 10 的分数来衡量。

相关视频

探索性分析

总共有 855 款葡萄酒被归类为“好”品质,744 款葡萄酒被归类为“差”品质。固定酸度、挥发性酸度、柠檬酸、氯化物、游离二氧化硫、总二氧化硫、密度、硫酸盐和酒精度与葡萄酒质量显着相关( t 检验的 P 值 < 0.05),这表明了重要的预测因子。我们还构建了密度图来探索 11 个连续变量在“差”和“好”葡萄酒质量上的分布。从图中可以看出,品质优良的葡萄酒在PH方面没有差异,而不同类型的葡萄酒在其他变量上存在差异,这与t检验结果一致。

na.oit() %>

muate(qal= ase_hen(ality>5 ~good", quaity <=5 ~ "poor")) %>%

muate(qua= s.fatrqual)) %>%

dpeme1 <- rsparentTme(trans = .4)



plot = "density", pch = "|",

auto.key = list(columns = 2))

1ae00e1d8683c3ec36a1c76b60725a9c.png

图 1. 葡萄酒品质和预测特征之间的描述图。
表 1. 优质和劣质葡萄酒的基本特征。

# 在表1中创建一个我们想要的变量b1 <- CeatTableOe(vars  litars, straa = ’qual’ da winetab

1c3caab79dc2402f64547d786cdbac76.png


点击标题查阅往期内容

a0aaff088bea0ae8a1e0da630f0259fd.jpeg

R语言主成分分析(PCA)葡萄酒可视化:主成分得分散点图和载荷图

outside_default.png

左右滑动查看更多

outside_default.png

01

outside_default.png

02

outside_default.png

03

outside_default.png

04

outside_default.png

模型

我们随机选择 70% 的观测值作为训练数据,其余的作为测试数据。所有 11 个预测变量都被纳入分析。我们使用线性方法、非线性方法、树方法和支持向量机来预测葡萄酒质量的分类。对于线性方法,我们训练(惩罚)逻辑回归模型和线性判别分析(LDA)。逻辑回归的假设包括相互独立的观察结果以及自变量和对数几率的线性关系。LDA 和 QDA 假设具有正态分布的特征,即预测变量对于“好”和“差”的葡萄酒质量都是正态分布的。对于非线性模型,我们进行了广义加性模型(GAM)、多元自适应回归样条(MARS)、KNN模型和二次判别分析(QDA)。对于树模型,我们进行了分类树和随机森林模型。还执行了具有线性和径向内核的 SVM。我们计算了模型选择的 ROC 和准确度,并调查了变量的重要性。10 折交叉验证 (CV) 用于所有模型。

inTrai <- cateatPariti(y  winequal, p = 0.7, lit =FASE)traiData <- wine\[inexTr, teDt <wi\[-idxTrain,\]

线性模型 多元逻辑回归显示,在 11 个预测因子中,挥发性酸度、柠檬酸、游离二氧化硫、总二氧化硫、硫酸盐和酒精与葡萄酒质量显着相关(P 值 < 0.05),解释了总方差的 25.1%。酒质。将该模型应用于测试数据时,准确度为 0.75(95%CI:0.71-0.79),ROC 为 0.818,表明数据拟合较好。在进行惩罚性逻辑回归时,我们发现最大化ROC时,最佳调优参数为alpha=1和lambda=0.00086,准确度为0.75(95%CI:0.71-0.79),ROC也为0.818。由于 lambda 接近于零且 ROC 与逻辑回归模型相同,因此惩罚相对较小,

但是,由于逻辑回归要求自变量之间存在很少或没有多重共线性,因此模型可能会受到 11 个预测变量之间的共线性(如果有的话)的干扰。至于LDA,将模型应用于测试数据时,ROC为0.819,准确率为0.762(95%CI:0.72-0.80)。预测葡萄酒品质的最重要变量是酒精度、挥发性酸度和硫酸盐。与逻辑回归模型相比,LDA 在满足正常假设的情况下,在样本量较小或类别分离良好的情况下更有帮助。

### 逻辑回归cl - tranControlmehod =cv" number  10,

summayFunio = TRUE)

set.seed(1)

moel.gl<- train(x = tainDaa %>% dpyr::selct(-ual),

y = trainDaa$qualmetod "glm",

metic = OC",

tContrl = crl# 检查预测因素的重要性summary(odel.m)

outside_default.png

# 建立混淆矩阵

tetred.prb <- rdct(mod.gl, newdat = tstDat

tye = "robtest.ped <- rep("good", length(pred.prconfusionMatrix(data = as.factor(test.pred),

outside_default.png

outside_default.png

# 绘制测试ROC图oc.l <- roc(testa$al, es.pr.rob$god)

outside_default.png

## 测试误差和训练误差er.st. <- mean(tett$qul!= tt.pred)tranped.obgl <-pric(moel.lmnewda= taiDaa,type = "robmoe.ln <-tai(xtraDa %>% dlyr:seec-qal),y = traDmethd = "met",tueGid = lGrid,mtc = "RO",trontrol  ctl)plotodel.gl, xTras =uction() lg(x)

outside_default.png

#选择最佳参数mol.mn$bestune

outside_default.png

# 混淆矩阵tes.red2 <- rp"good" ngth(test.ed.prob2$good))

tst.red2\[tespre.prob2$good < 0.5\] <- "poor

conuionMatridata = as.fcto(test.prd2),

outside_default.png

outside_default.png

outside_default.png

outside_default.png

outside_default.png

非线性模型 在 GAM 模型中,只有挥发性酸度的自由度等于 1,表明线性关联,而对所有其他 10 个变量应用平滑样条。

结果表明,酒精、柠檬酸、残糖、硫酸盐、固定酸度、挥发性酸度、氯化物和总二氧化硫是显着的预测因子(P值<0.05)。

总的来说,这些变量解释了葡萄酒质量总变化的 39.1%。使用测试数据的混淆矩阵显示,GAM 的准确度为 0.76(95%CI:0.72-0.80),ROC 为 0.829。

MARS 模型表明,在最大化 ROC 时,我们在 11 个预测变量中包含了 5 个项,其中 nprune 等于 5,度数为 2。这些预测变量和铰链函数总共解释了总方差的 32.2%。根据 MARS 输出,三个最重要的预测因子是总二氧化硫、酒精和硫酸盐。

将 MARS 模型应用于测试数据时,准确度为 0.75(95%CI:0.72,0.80),ROC 为 0.823。我们还执行了 KNN 模型进行分类。当 k 等于 22 时,ROC 最大化。KNNmodel 的准确度为 0.63(95%CI:0.59-0.68),ROC 为 0.672。

QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。59-0.68),ROC 为 0.672。QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。

预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。59-0.68),ROC 为 0.672。QDA模型显示ROC为0.784,准确率为0.71(95%CI:0.66-0.75)。预测葡萄酒质量的最重要变量是酒精、挥发性酸度和硫酸盐。

GAM 和 MARS 的优点是这两个模型都是非参数模型,并且能够处理高度复杂的非线性关系。具体来说,MARS 模型可以在模型中包含潜在的交互作用。然而,由于模型的复杂性、耗时的计算和高度的过拟合倾向是这两种模型的局限性。对于 KNN 模型,当 k 很大时,预测可能不准确。

### GAMse.see(1)

md.gam<- ran(x =trainDta %%dplr::slect(-qal),y = traiat$ual,thod = "am",metri = "RO",trCotrol = ctrl)

moel.gm$finlMdel

outside_default.png

summary(mel.gam)

outside_default.png

# 建立混淆矩阵test.pr.pob3 - prdict(mod.ga nwdata =tstData,

tye = "prb")

testped3 - rep"good" legt(test.predpob3$goo))

testprd3\[test.predprob3good < 0.5\] <- "poo

referetv = "good")

outside_default.png

outside_default.png

outside_default.png

outside_default.png

model.mars$finalModel

outside_default.png

vpmodl.rs$inlodel)

outside_default.png

outside_default.png

outside_default.png

# 绘制测试ROC图

ocmas <- roctestataqua, tes.pred.rob4god)

## Stting level: conrol = god, case= poor

## Settig diectio: cntrols> caseplot(ro.mars legac.axes = TRE, prin.auc= RUE)

plot(soothroc.mars), co = 4, ad =TRUE)

outside_default.png

errr.tria.mas <-man(tainat$qul ! trai.red.ars)### KNNGrid < epa.gri(k seq(from = 1, to = 40, by = 1))

seted(1fknnrainqual ~.,

dta = trnData,

mthd ="knn"metrrid = kid)

ggplot(fitkn

outside_default.png

outside_default.png

# 建立混淆矩阵ts.re.po7 < prdi(ft.kn, ewdt = estDaatype = "prb"

outside_default.png

outside_default.png

### QDAseteed1)%>% pyr:c-ual),y= trataq

ethod "d"mric = "OC",tContol =ctl)# 建立混淆矩阵tet.pprob <-pedct(mol.da,nedaa = teDta,te = "pb")

testred6<- rep(o", leng(est.ped.pob6$goo))

outside_default.png

outside_default.png

outside_default.png

树方法

基于分类树,最大化AUC时最终的树大小为41。测试错误率为 0.24,ROC 为 0.809。此分类树的准确度为 0.76(95%CI:0.72-0.80)。我们还进行了随机森林方法来研究变量的重要性。因此,酒精是最重要的变量,其次是硫酸盐、挥发性酸度、总二氧化硫、密度、氯化物、固定酸度、柠檬酸、游离二氧化硫和残糖。pH 是最不重要的变量。对于随机森林模型,测试错误率为 0.163,准确率为 0.84(95%CI:0.80-0.87),ROC 为 0.900。树方法的一个潜在限制是它们对数据的变化很敏感,即数据的微小变化可能引起分类树的较大变化。

# 分类ctr <- tintol(meod ="cv", number = 10,smmryFuton= twoClassSma

et.se(1rart_grid = a.fra(cp = exp(eq(10,-, len =0)))clsste = traqua~., rainDta,metho ="rprt

tueGrid = patid,

trCtrl  cr)

ggt(class.tee,highight =TRE)

outside_default.png

outside_default.png

## 计算测试误差rpartpred = icla.te edta =testata, ye = "aw)

te.ero.sree = mean(testa$a !=rartpre)

rprred_trin  reic(ss.tre,newdta = raiata, tye  "raw")



# 建立混淆矩阵

teste.pob8 <-rdic(cste, edata =tstData,pe = "po"

tet.pd8 - rpgod" legthtetred.rb8d))

outside_default.png

outside_default.png

# 绘制测试ROC图

ro.r <-oc(testaual, tstedrob$od)pot(rc.ctreegy.axes  TU pit.a = TRE)plo(ooth(c.tre, col= 4, ad = TRE

outside_default.png

# 随机森林和变量重要性

ctl <traontr(mthod= "cv, numbr = 10,clasPos = RUEoClssSummry)

rf.grid - xpa.gr(mt = 1:10,

spltrule "gini"min.nd.sie =seq(from = 1,to  12, by = 2))se.sed(1)

rf.fit <- inqual

mthd= "ranger",

meric = "ROC",

 = ctrl

gglt(rf.it,hiliht  TRE)

outside_default.png

scle.ermutatin.iportace  TRU)barplt(sort(rangr::imoranc(random

outside_default.png

6fdc315119dea3366fcef7e8dd397aa3.png

a3fa479e93e62a9992a46166013f4612.png

4f274d2df2a3f0deec694e27088b0458.png

支持向量机

我们使用带有线性核的 SVM,并调整了成本函数。我们发现具有最大化 ROChad 成本的模型 = 0.59078。该模型的 ROC 为 0.816,准确度为 0.75(测试误差为 0.25)(95%CI:0.71-0.79)。质量预测最重要的变量是酒精;挥发性酸度和总二氧化硫也是比较重要的变量。如果真实边界是非线性的,则具有径向核的 SVM 性能更好。

st.seed(svl.fi <- tain(qual~ . ,data = trainDatamehod= "mLar2",tueGri = data.frae(cos = ep(seq(-25,ln = 0))

9e6a0626d2f584de5409ceea6c69dd4b.png

74f492d5205efb613965b519f5e3b930.png

201ed3ce1b0e77303515ba064ea591fe.png

2c9caac13dc9d5ddf8ff98da7d7d8b14.png

474ea07d9d4d315580efb2786635b1f0.png

## 带径向核的SVMsvmr.grid  epand.gid(C = epseq(1,4,le=10)),

iga = expsq(8,len=10)))

svmr.it<- tan(qual ~ .,

da = taiDataRialSigma",

preProcess= c("cer" "scale"),

tunnrol = c)

a55bbc6dce8f62d13e8357ccc0b4b0fc.png

982e9d5e6f109d0c49b084a75c28678e.png

aaa48b187722d55931568a3a9c2ce0f8.png

4c71be1c32fea1cabfe1dc8ec3334196.png

模型比较

模型建立后,我们根据所有模型的训练和测试性能进行模型比较。下表显示了所有模型的交叉验证分类错误率和 ROC。结果中,随机森林模型的 AUC 值最大,而 KNN 最小。因此,我们选择随机森林模型作为我们数据的最佳预测分类模型。基于随机森林模型,酒精、硫酸盐、挥发性酸度、总二氧化硫和密度是帮助我们预测葡萄酒质量分类的前 5 个重要预测因子。由于酒精、硫酸盐和挥发性酸度等因素可能决定葡萄酒的风味和口感,所以这样的发现符合我们的预期。在查看每个模型的总结时,我们意识到KNN模型的AUC值最低,测试分类错误率最大,为0.367。其他九个模型的 AUC 值接近,约为 82%。

rsam = rsmes(list(summary(resamp)

744fca1ecf6e7d7de26e366429aec8b7.png

3de07648e383215780439e292034659d.png

23cf6995c32d1e8cd5ef5d29e4643098.png

comrin = sumaryes)$satitics$ROr_quare  smary(rsamp)saisis$sqrekntr::ableomris\[,1:6\])

26164f6bd0c74e326b768f2011645195.png

bpot(remp meic = "ROC")

529c792f0513da813971ee5eb0e360cd.png

f<- datafram(dl\_Name, TainError,Test\_Eror, Tes_RC)

knir::abe(df)

9c55bfbf8fdd8e557abc4080a9fc97b7.png

结论

模型构建过程表明,在训练数据集中,酒精、硫酸盐、挥发性酸度、总二氧化硫和密度是葡萄酒质量分类的前 5 个重要预测因子。我们选择了随机森林模型,因为它的 AUC 值最大,分类错误率最低。该模型在测试数据集中也表现良好。因此,这种随机森林模型是葡萄酒品质分类的有效方法。

数据获取

在下面公众号后台回复“葡萄酒数”,可获取完整数据。


9a4e0f0f43f868f23283a260986b567a.png

点击文末“阅读原文”

获取全文完整资料。

本文选自《R语言惩罚逻辑回归、线性判别分析LDA、广义加性模型GAM、多元自适应回归样条MARS、KNN、二次判别分析QDA、决策树、随机森林、支持向量机SVM分类优质劣质葡萄酒十折交叉验证和ROC可视化》。

325baf8a84e6017ac3d51ee078ed8492.jpeg

本文中的葡萄酒数据分享到会员群,扫描下面二维码即可加群!

7b34a897378f25a1de7d9bbb1f578a14.png

514ca068edde98ac64850c9aa705f798.jpeg

49aafa113fba5535327bdbe9d1da4620.png

点击标题查阅往期内容

R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据

逻辑回归Logistic模型原理R语言分类预测冠心病风险实例

数据分享|用加性多元线性回归、随机森林、弹性网络模型预测鲍鱼年龄和可视化

R语言高维数据惩罚回归方法:主成分回归PCR、岭回归、lasso、弹性网络elastic net分析基因数据(含练习题)

Python中LARS和Lasso回归之最小角算法Lars分析波士顿住房数据实例

R语言Bootstrap的岭回归和自适应LASSO回归可视化

R语言Lasso回归模型变量选择和糖尿病发展预测模型

R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

基于R语言实现LASSO回归分析

R语言用LASSO,adaptive LASSO预测通货膨胀时间序列

R语言自适应LASSO 多项式回归、二元逻辑回归和岭回归应用分析

R语言惩罚logistic逻辑回归(LASSO,岭回归)高维变量选择的分类模型案例

Python中的Lasso回归之最小角算法LARS

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

R语言实现LASSO回归——自己编写LASSO回归算法

R使用LASSO回归预测股票收益

python使用LASSO回归预测股票收益

941c2bf7c3892966a1f2d7ac13cfbec7.png

ae6b16f11facd3a23ea1ba8104f894b5.jpeg

ed9de8eeb7f634fd0a6f76723ef09b1d.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1013787.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu中如何用docker下载华为opengauss数据库(超简单)

ubuntu中如何下载华为opengauss数据库 前言一、安装docker1.方法一&#xff1a;2.方法二 二、拉取openguass镜像三、创建容器四、连接数据库 ,切换到omm用户 &#xff0c;用gsql连接到数据库五.最后用DateGrip远程连接测试(1&#xff09;选择数据源(2&#xff09;查看虚拟机ip地…

ITIL 4指导、计划和改进—评估和计划

第3章 评估和计划 当规划改进或其他倡议时&#xff0c;了解当前状态至关重要。这使组织能够&#xff1a; ● 比较当前状态与期望的未来状态&#xff1b; ● 找出两个状态之间的差距&#xff1b; ● 开发符合逻辑的计划以弥补这些差距。 3.1 评估的基础 评估用于测量、分析…

Slim-neck by GSConv:自动驾驶车辆检测器架构的更好设计范式(文末附代码)

Slim-neck by GSConv:自动驾驶车辆检测器架构的更好设计范式 摘要引言相关工作本文方法GSConv的优势在于轻量级检测器&#xff0c;这些检测器通过添加DSC层和Shuffle来增加非线形表达能力。但是&#xff0c;如果GSConv在模型的所有阶段都使用&#xff0c;模型的网络层会变得更深…

Django系列:Django开发环境配置与第一个Django项目

Django系列 Django开发环境配置与第一个Django项目 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/1328…

三维模型3DTile格式轻量化压缩处理的数据质量提升方法分析

三维模型3DTile格式轻量化压缩处理的数据质量提升方法分析 在处理三维模型3DTile格式的轻量化压缩时&#xff0c;如何在减少数据量的同时&#xff0c;保证或提升数据质量是一大挑战。以下为一些提升数据质量的方法分析&#xff1a; 改进几何简化算法&#xff1a;在进行几何简化…

精品SpringCloud的B2C模式在线学习网微服务分布式

《[含文档PPT源码等]精品基于SpringCloud实现的B2C模式在线学习网站-微服务-分布式》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等 软件开发环境及开发工具&#xff1a; 开发语言&#xff1a;Java 框架&#xff1a;springcloud JDK版本&#xf…

基于matlab中点放炮各类地震波时距曲线程序

完整程序&#xff1a; clear all dx50;x-500:dx:500;%炮检距 h100;V11500; theta25*pi/180; V2V1/sin(theta); t1sqrt(x.*x4*h*h)/V1;%反射波时距曲线 t2abs(x)./V1;%直达波时距曲线 %折射波时距曲线 xm2*h*tan(theta);%求盲区 k1; for i1:length(x) if x(i)<-xm …

Python提取JSON数据中的键值对并保存为.csv文件

本文介绍基于Python&#xff0c;读取JSON文件数据&#xff0c;并将JSON文件中指定的键值对数据转换为.csv格式文件的方法。 在之前的文章Python提取JSON文件中的指定数据并保存在CSV或Excel表格文件内&#xff08;https://blog.csdn.net/zhebushibiaoshifu/article/details/132…

Mac电脑安装Zulu Open JDK 8 使用 spring-kafka 消费不到Kafka Partition中的消息

一、现象描述 使用Mac电脑本地启动spring-kakfa消费不到Kafka的消息&#xff0c;监控消费组的消息偏移量发现存在Lag的消息&#xff0c;但是本地客户端就是拉取不到&#xff0c;通过部署到公司k8s容器上消息却能正常消费&#xff01; 本地启动的服务消费组监控 公司k8s容器服…

安防监控视频系统EasyCVR+AI算法智能分析网关助力智慧校园建设

学生是祖国的未来&#xff0c;学校就是培育学生的地方。随着校园信息化建设的不断发展&#xff0c;信息服务在校园管理中的作用也越来越强。在保障学生安全与校园高效管理上&#xff0c;人工智能做出了极大贡献&#xff0c;旭帆科技安防监控系统/视频汇聚/云存储/AI智能视频分析…

java面试题基础第七天

一、java面试题第七天 1.throw和throws的区别&#xff1f; throw&#xff1a; 用于抛出一个异常对象throws&#xff1a;写在方法体上面&#xff0c;将方法体里面的异常&#xff0c;抛给上层 2. 通过故事讲清楚NIO 下面通过一个例子来讲解下。 假设某银行只有10个职员。该银…

【多光谱与高光谱图像融合:金字塔混洗Transformer】

PSRT: Pyramid Shuffle-and-Reshuffle Transformer for Multispectral and Hyperspectral Image Fusion &#xff08;PSRT&#xff1a;用于多光谱与高光谱图像融合的金字塔混洗Transformer&#xff09; Transformer在计算机视觉中受到了很多关注。由于Transformer具有全局自关…

使用Docker构建轻量级Linux容器

Docker是一个开源的容器化平台&#xff0c;可以帮助用户快速创建、部署和管理应用程序的轻量级Linux容器。通过Docker&#xff0c;用户可以将应用程序及其所有依赖项打包成一个独立的容器镜像&#xff0c;并在各种环境中运行&#xff0c;无需担心环境差异和依赖冲突。下面将详细…

【多线程】CAS 详解

CAS 详解 一. 什么是 CAS二. CAS 的应用1. 实现原子类2. 实现自旋锁 三. CAS 的 ABA 问题四. 相关面试题 一. 什么是 CAS CAS: 全称Compare and swap&#xff0c;字面意思:”比较并交换“一个 CAS 涉及到以下操作&#xff1a; 我们假设内存中的原数据 V&#xff0c;旧的预期值…

c++ vs2019 cpp20规范 模板function 源码解析

以下是文字结论&#xff1a; 这个函数模板&#xff0c;可以把函数类型&#xff0c;和对象函数类型&#xff08;就是类里定义了operator()运算符函数&#xff09;统一成一个类型&#xff0c;反正都是可调用对象。 代码注释完有900行&#xff0c;也挺多的。选择最重要的结论贴出…

腾讯mini项目-【指标监控服务重构】2023-08-21

今日已办 PPT 汇报 答辩的时间需要把控人员的分配不够合理效果展示不够清晰&#xff0c;不够熟练重点的调研测试对比报告还未产出 项目待办 50字总结项目意义&#xff0c;top3 难点watermill 和 profile 正则处理otel-sdk 隐式&#xff0c;可扩展接入云 clickhouse 集群&am…

[maven] scopes 管理 profile 测试覆盖率

[maven] scopes & 管理 & profile & 测试覆盖率 这里将一些其他的特性和测试覆盖率&#xff08;主要是 jacoco&#xff09; scopes maven 的 scope 主要就是用来限制和管理依赖的传递性&#xff0c;简单的说就是&#xff0c;每一个 scope 都有其对应的特性&…

大语言模型如何生成内容

大语言模型生成内容主要基于语言模型算法。语言模型是一种机器学习算法&#xff0c;它可以根据给定文本来预测下一个词语或字符的出现的概率。语言模型通过大量的文本数据来学习语言的统计特征&#xff0c;进而生成具有相似统计特征的新文本。其核心目标是建立一个统计模型&…

zemax像散与消像散

打开zemax自带的例子 点列图可以观察到像散 我们旋转3D视图 这个角度似乎聚焦在像平面上&#xff0c;我们旋转90度 可以看到这一方向上其实已经聚焦 像散就是光斑在像面上子午方向和弧矢方向的不一致性 从光纤光扇图中可以具体的看出&#xff0c;两者不一致&#xff1a; 消除…

安卓毕业设计各种app项目,Android毕设设计,Android课程设计,毕业论文

作为一位从事软件开发多年的专业人士&#xff0c;您积累了丰富的经验和技能&#xff0c;解决了许多不同类型的问题。除了开发原创项目&#xff0c;您还愿意分享您的知识&#xff0c;指导实习生和在校生。这种乐于助人的行为对于行业的发展和新一代软件开发者的成长都起着积极的…