黑马头条 热点文章实时计算、kafkaStream

news2024/12/22 2:35:29

  热点文章-实时计算

1 今日内容

1.1 定时计算与实时计算

1.2 今日内容

kafkaStream

  • 什么是流式计算
  • kafkaStream概述
  • kafkaStream入门案例
  • Springboot集成kafkaStream

实时计算

  • 用户行为发送消息
  • kafkaStream聚合处理消息
  • 更新文章行为数量
  • 替换热点文章数据

2 实时流式计算

2.1 概念

一般流式计算会与批量计算相比较。在流式计算模型中,输入是持续的,可以认为在时间上是无界的,也就意味着,永远拿不到全量数据去做计算。同时,计算结果是持续输出的,也即计算结果在时间上也是无界的。流式计算一般对实时性要求较高,同时一般是先定义目标计算,然后数据到来之后将计算逻辑应用于数据。同时为了提高计算效率,往往尽可能采用增量计算代替全量计算。

流式计算就相当于上图的右侧扶梯,是可以源源不断的产生数据,源源不断的接收数据,没有边界。

2.2 应用场景

  • 日志分析

网站的用户访问日志进行实时的分析,计算访问量,用户画像,留存率等等,实时的进行数据分析,帮助企业进行决策

  • 大屏看板统计

可以实时的查看网站注册数量,订单数量,购买数量,金额等。

  • 公交实时数据

可以随时更新公交车方位,计算多久到达站牌

  • 实时文章分值计算

头条类文章的分值计算,通过用户的行为实时文章的分值,分值越高就越被推荐。

2.3 技术方案选型

  • Hadoop

  • Apche Storm

Storm 是一个分布式实时大数据处理系统,可以帮助我们方便地处理海量数据,具有高可靠、高容错、高扩展的特点。是流式框架,有很高的数据吞吐能力。

  • Kafka Stream

可以轻松地将其嵌入任何Java应用程序中,并与用户为其流应用程序所拥有的任何现有打包,部署和操作工具集成。

3 Kafka Stream

3.1 概述

Kafka Stream是Apache Kafka从0.10版本引入的一个新Feature。它是提供了对存储于Kafka内的数据进行流式处理和分析的功能。

Kafka Stream的特点如下:

  • Kafka Stream提供了一个非常简单而轻量的Library,它可以非常方便地嵌入任意Java应用中,也可以任意方式打包和部署
  • 除了Kafka外,无任何外部依赖
  • 充分利用Kafka分区机制实现水平扩展和顺序性保证
  • 通过可容错的state store实现高效的状态操作(如windowed join和aggregation)
  • 支持正好一次处理语义
  • 提供记录级的处理能力,从而实现毫秒级的低延迟
  • 支持基于事件时间的窗口操作,并且可处理晚到的数据(late arrival of records)
  • 同时提供底层的处理原语Processor(类似于Storm的spout和bolt),以及高层抽象的DSL(类似于Spark的map/group/reduce)

3.2 Kafka Streams的关键概念

  • 源处理器(Source Processor):源处理器是一个没有任何上游处理器的特殊类型的流处理器。它从一个或多个kafka主题生成输入流。通过消费这些主题的消息并将它们转发到下游处理器。
  • Sink处理器:sink处理器是一个没有下游流处理器的特殊类型的流处理器。它接收上游流处理器的消息发送到一个指定的Kafka主题

3.3 KStream

(1)数据结构类似于map,如下图,key-value键值对

(2)KStream

KStream数据流(data stream),即是一段顺序的,可以无限长,不断更新的数据集。

数据流中比较常记录的是事件,这些事件可以是一次鼠标点击(click),一次交易,或是传感器记录的位置数据。

KStream负责抽象的,就是数据流。与Kafka自身topic中的数据一样,类似日志,每一次操作都是向其中插入(insert)新数据。

为了说明这一点,让我们想象一下以下两个数据记录正在发送到流中:

(“ alice”,1)->(“” alice“,3)

如果您的流处理应用是要总结每个用户的价值,它将返回4alice。为什么?因为第二条数据记录将不被视为先前记录的更新。(insert)新数据

3.4 Kafka Stream入门案例编写

(1)需求分析,求单词个数(word count)

(2)引入依赖

在之前的kafka-demo工程的pom文件中引入

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-streams</artifactId>
    <exclusions>
        <exclusion>
            <artifactId>connect-json</artifactId>
            <groupId>org.apache.kafka</groupId>
        </exclusion>
        <exclusion>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
        </exclusion>
    </exclusions>
</dependency>

(3)创建原生的kafka staream入门案例

package com.heima.kafka.sample;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

/**
 * 流式处理
 */
public class KafkaStreamQuickStart {

    public static void main(String[] args) {

        //kafka的配置信息
        Properties prop = new Properties();
        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.200.130:9092");
        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"streams-quickstart");

        //stream 构建器
        StreamsBuilder streamsBuilder = new StreamsBuilder();

        //流式计算
        streamProcessor(streamsBuilder);

        //创建kafkaStream对象
        KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(),prop);
        //开启流式计算
        kafkaStreams.start();
    }

    /**
     * 流式计算
     * 消息的内容:hello kafka  hello itcast
     * @param streamsBuilder
     */
    private static void streamProcessor(StreamsBuilder streamsBuilder) {
        //创建kstream对象,同时指定从那个topic中接收消息
        KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
        /**
         * 处理消息的value
         */
        stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
            @Override
            public Iterable<String> apply(String value) {
                return Arrays.asList(value.split(" "));
            }
        })
                //按照value进行聚合处理
                .groupBy((key,value)->value)
                //时间窗口 
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                //统计单词的个数
                .count()
                //转换为kStream
                .toStream()
                .map((key,value)->{
                    System.out.println("key:"+key+",vlaue:"+value);
                    return new KeyValue<>(key.key().toString(),value.toString());
                })
                //发送消息
                .to("itcast-topic-out");
    }
}

(4)测试准备

  • 使用生产者在topic为:itcast_topic_input中发送多条消息
  • 使用消费者接收topic为:itcast_topic_out

结果:

  • 通过流式计算,会把生产者的多条消息汇总成一条发送到消费者中输出

3.5 SpringBoot集成Kafka Stream

(1)自定配置参数

package com.heima.kafka.config;
import java.util.HashMap;
import java.util.Map;

/**
 * 通过重新注册KafkaStreamsConfiguration对象,设置自定配置参数
 */

@Setter
@Getter
@Configuration
@EnableKafkaStreams
@ConfigurationProperties(prefix="kafka")
public class KafkaStreamConfig {
    private static final int MAX_MESSAGE_SIZE = 16* 1024 * 1024;
    private String hosts;
    private String group;
    @Bean(name = KafkaStreamsDefaultConfiguration.DEFAULT_STREAMS_CONFIG_BEAN_NAME)
    public KafkaStreamsConfiguration defaultKafkaStreamsConfig() {
        Map<String, Object> props = new HashMap<>();
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, hosts);//连接信息
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, this.getGroup()+"_stream_aid");//组
        props.put(StreamsConfig.CLIENT_ID_CONFIG, this.getGroup()+"_stream_cid");//应用名称
        props.put(StreamsConfig.RETRIES_CONFIG, 10);//重试次数
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());//key序列化器
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        return new KafkaStreamsConfiguration(props);
    }
}

修改application.yml文件,在最下方添加自定义配置

kafka:
  hosts: 192.168.200.130:9092
  group: ${spring.application.name}

(2)新增配置类,创建KStream对象,进行聚合

package com.heima.kafka.stream;
import java.time.Duration;
import java.util.Arrays;

@Configuration
@Slf4j
public class KafkaStreamHelloListener {

    @Bean
    public KStream<String,String> kStream(StreamsBuilder streamsBuilder){
        //创建kstream对象,同时指定从那个topic中接收消息
        KStream<String, String> stream = streamsBuilder.stream("itcast-topic-input");
        stream.flatMapValues(new ValueMapper<String, Iterable<String>>() {
            @Override
            public Iterable<String> apply(String value) {
                return Arrays.asList(value.split(" "));
            }
        })
                //根据value进行聚合分组
                .groupBy((key,value)->value)
                //聚合计算时间间隔
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                //求单词的个数
                .count()
                .toStream()
                //处理后的结果转换为string字符串
                .map((key,value)->{
                    System.out.println("key:"+key+",value:"+value);
                    return new KeyValue<>(key.key().toString(),value.toString());
                })
                //发送消息
                .to("itcast-topic-out");
        return stream;
    }
}

测试:

启动微服务,正常发送消息,可以正常接收到消息

3 app端热点文章计算

3.1 思路说明

3.2 功能实现

3.2.1 用户行为(阅读量,评论,点赞,收藏)发送消息,以阅读和点赞为例

①在heima-leadnews-behavior微服务中集成kafka生产者配置

修改nacos,新增内容

spring:
  application:
    name: leadnews-behavior
  kafka:
    bootstrap-servers: 192.168.200.130:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer

②修改ApLikesBehaviorServiceImpl新增发送消息

定义消息发送封装类:UpdateArticleMess

package com.heima.model.mess;

import lombok.Data;

@Data
public class UpdateArticleMess {

    /**
     * 修改文章的字段类型
      */
    private UpdateArticleType type;
    /**
     * 文章ID
     */
    private Long articleId;
    /**
     * 修改数据的增量,可为正负
     */
    private Integer add;

    public enum UpdateArticleType{
        COLLECTION,COMMENT,LIKES,VIEWS;
    }
}

topic常量类:

package com.heima.common.constants;
public class HotArticleConstants {
    public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";
}

完整代码如下:

package com.heima.behavior.service.impl;

import org.springframework.transaction.annotation.Transactional;

@Service
@Transactional
@Slf4j
public class ApLikesBehaviorServiceImpl implements ApLikesBehaviorService {

    @Autowired
    private CacheService cacheService;

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @Override
    public ResponseResult like(LikesBehaviorDto dto) {

        //1.检查参数
        if (dto == null || dto.getArticleId() == null || checkParam(dto)) {
            return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
        }

        //2.是否登录
        ApUser user = AppThreadLocalUtil.getUser();
        if (user == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
        }

        UpdateArticleMess mess = new UpdateArticleMess();
        mess.setArticleId(dto.getArticleId());
        mess.setType(UpdateArticleMess.UpdateArticleType.LIKES);

        //3.点赞  保存数据
        if (dto.getOperation() == 0) {
            Object obj = cacheService.hGet(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
            if (obj != null) {
                return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID, "已点赞");
            }
            // 保存当前key
            log.info("保存当前key:{} ,{}, {}", dto.getArticleId(), user.getId(), dto);
            cacheService.hPut(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));
            mess.setAdd(1);
        } else {
            // 删除当前key
            log.info("删除当前key:{}, {}", dto.getArticleId(), user.getId());
            cacheService.hDelete(BehaviorConstants.LIKE_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
            mess.setAdd(-1);
        }

        //发送消息,数据聚合
        kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));

        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
    }
    /**
     * 检查参数
     *
     * @return
     */
    private boolean checkParam(LikesBehaviorDto dto) {
        if (dto.getType() > 2 || dto.getType() < 0 || dto.getOperation() > 1 || dto.getOperation() < 0) {
            return true;
        }
        return false;
    }
}

③修改阅读行为的类ApReadBehaviorServiceImpl发送消息

完整代码:

package com.heima.behavior.service.impl;
import org.springframework.transaction.annotation.Transactional;

@Service
@Transactional
@Slf4j
public class ApReadBehaviorServiceImpl implements ApReadBehaviorService {

    @Autowired
    private CacheService cacheService;

    @Autowired
    private KafkaTemplate<String,String> kafkaTemplate;

    @Override
    public ResponseResult readBehavior(ReadBehaviorDto dto) {
        //1.检查参数
        if (dto == null || dto.getArticleId() == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
        }

        //2.是否登录
        ApUser user = AppThreadLocalUtil.getUser();
        if (user == null) {
            return ResponseResult.errorResult(AppHttpCodeEnum.NEED_LOGIN);
        }
        //更新阅读次数
        String readBehaviorJson = (String) cacheService.hGet(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString());
        if (StringUtils.isNotBlank(readBehaviorJson)) {
            ReadBehaviorDto readBehaviorDto = JSON.parseObject(readBehaviorJson, ReadBehaviorDto.class);
            dto.setCount((short) (readBehaviorDto.getCount() + dto.getCount()));
        }
        // 保存当前key
        log.info("保存当前key:{} {} {}", dto.getArticleId(), user.getId(), dto);
        cacheService.hPut(BehaviorConstants.READ_BEHAVIOR + dto.getArticleId().toString(), user.getId().toString(), JSON.toJSONString(dto));

        //发送消息,数据聚合
        UpdateArticleMess mess = new UpdateArticleMess();
        mess.setArticleId(dto.getArticleId());
        mess.setType(UpdateArticleMess.UpdateArticleType.VIEWS);
        mess.setAdd(1);
        kafkaTemplate.send(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC,JSON.toJSONString(mess));
        
        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
    }
}

3.2.2 使用kafkaStream实时接收消息,聚合内容

①在leadnews-article微服务中集成kafkaStream (参考kafka-demo)

②定义实体类,用于聚合之后的分值封装

package com.heima.model.article.mess;
import lombok.Data;

@Data
public class ArticleVisitStreamMess {
    /**
     * 文章id
     */
    private Long articleId;
    /**
     * 阅读
     */
    private int view;
    /**
     * 收藏
     */
    private int collect;
    /**
     * 评论
     */
    private int comment;
    /**
     * 点赞
     */
    private int like;
}

修改常量类:增加常量

package com.heima.common.constans;
public class HotArticleConstants {
    public static final String HOT_ARTICLE_SCORE_TOPIC="hot.article.score.topic";
    public static final String HOT_ARTICLE_INCR_HANDLE_TOPIC="hot.article.incr.handle.topic";
}

③ 定义stream,接收消息并聚合

package com.heima.article.stream;
import java.time.Duration;

@Configuration
@Slf4j
public class HotArticleStreamHandler {

    @Bean
    public KStream<String,String> kStream(StreamsBuilder streamsBuilder){
        //接收消息
        KStream<String,String> stream = streamsBuilder.stream(HotArticleConstants.HOT_ARTICLE_SCORE_TOPIC);
        //聚合流式处理
        stream.map((key,value)->{
            UpdateArticleMess mess = JSON.parseObject(value, UpdateArticleMess.class);
            //重置消息的key:1234343434   和  value: likes:1
            return new KeyValue<>(mess.getArticleId().toString(),mess.getType().name()+":"+mess.getAdd());
        })
                //按照文章id进行聚合
                .groupBy((key,value)->key)
                //时间窗口
                .windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
                /**
                 * 自行的完成聚合的计算
                 */
                .aggregate(new Initializer<String>() {
                    /**
                     * 初始方法,返回值是消息的value
                     * @return
                     */
                    @Override
                    public String apply() {
                        return "COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0";
                    }
                    /**
                     * 真正的聚合操作,返回值是消息的value
                     */
                }, new Aggregator<String, String, String>() {
                    @Override
                    public String apply(String key, String value, String aggValue) {
                        if(StringUtils.isBlank(value)){
                            return aggValue;
                        }
                        String[] aggAry = aggValue.split(",");
                        int col = 0,com=0,lik=0,vie=0;
                        for (String agg : aggAry) {
                            String[] split = agg.split(":");
                            /**
                             * 获得初始值,也是时间窗口内计算之后的值
                             */
                            switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){
                                case COLLECTION:
                                    col = Integer.parseInt(split[1]);
                                    break;
                                case COMMENT:
                                    com = Integer.parseInt(split[1]);
                                    break;
                                case LIKES:
                                    lik = Integer.parseInt(split[1]);
                                    break;
                                case VIEWS:
                                    vie = Integer.parseInt(split[1]);
                                    break;
                            }
                        }
                        /**
                         * 累加操作
                         */
                        String[] valAry = value.split(":");
                        switch (UpdateArticleMess.UpdateArticleType.valueOf(valAry[0])){
                            case COLLECTION:
                                col += Integer.parseInt(valAry[1]);
                                break;
                            case COMMENT:
                                com += Integer.parseInt(valAry[1]);
                                break;
                            case LIKES:
                                lik += Integer.parseInt(valAry[1]);
                                break;
                            case VIEWS:
                                vie += Integer.parseInt(valAry[1]);
                                break;
                        }

                        String formatStr = String.format("COLLECTION:%d,COMMENT:%d,LIKES:%d,VIEWS:%d", col, com, lik, vie);
                        System.out.println("文章的id:"+key);
                        System.out.println("当前时间窗口内的消息处理结果:"+formatStr);
                        return formatStr;
                    }
                }, Materialized.as("hot-atricle-stream-count-001"))
                .toStream()
                .map((key,value)->{
                    return new KeyValue<>(key.key().toString(),formatObj(key.key().toString(),value));
                })
                //发送消息
                .to(HotArticleConstants.HOT_ARTICLE_INCR_HANDLE_TOPIC);

        return stream;
    }

    /**
     * 格式化消息的value数据
     * @param articleId
     * @param value
     * @return
     */
    public String formatObj(String articleId,String value){
        ArticleVisitStreamMess mess = new ArticleVisitStreamMess();
        mess.setArticleId(Long.valueOf(articleId));
        //COLLECTION:0,COMMENT:0,LIKES:0,VIEWS:0
        String[] valAry = value.split(",");
        for (String val : valAry) {
            String[] split = val.split(":");
            switch (UpdateArticleMess.UpdateArticleType.valueOf(split[0])){
                case COLLECTION:
                    mess.setCollect(Integer.parseInt(split[1]));
                    break;
                case COMMENT:
                    mess.setComment(Integer.parseInt(split[1]));
                    break;
                case LIKES:
                    mess.setLike(Integer.parseInt(split[1]));
                    break;
                case VIEWS:
                    mess.setView(Integer.parseInt(split[1]));
                    break;
            }
        }
        log.info("聚合消息处理之后的结果为:{}",JSON.toJSONString(mess));
        return JSON.toJSONString(mess);
    }
}

3.2.3 重新计算文章的分值,更新到数据库和缓存中

①在ApArticleService添加方法,用于更新数据库中的文章分值

/**
     * 更新文章的分值  同时更新缓存中的热点文章数据
     * @param mess
     */
public void updateScore(ArticleVisitStreamMess mess);

实现类方法

/**
     * 更新文章的分值  同时更新缓存中的热点文章数据
     * @param mess
     */
@Override
public void updateScore(ArticleVisitStreamMess mess) {
    //1.更新文章的阅读、点赞、收藏、评论的数量
    ApArticle apArticle = updateArticle(mess);
    //2.计算文章的分值
    Integer score = computeScore(apArticle);
    score = score * 3;

    //3.替换当前文章对应频道的热点数据
    replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + apArticle.getChannelId());

    //4.替换推荐对应的热点数据
    replaceDataToRedis(apArticle, score, ArticleConstants.HOT_ARTICLE_FIRST_PAGE + ArticleConstants.DEFAULT_TAG);
}

/**
     * 替换数据并且存入到redis
     * @param apArticle
     * @param score
     * @param s
     */
private void replaceDataToRedis(ApArticle apArticle, Integer score, String s) {
    String articleListStr = cacheService.get(s);
    if (StringUtils.isNotBlank(articleListStr)) {
        List<HotArticleVo> hotArticleVoList = JSON.parseArray(articleListStr, HotArticleVo.class);

        boolean flag = true;

        //如果缓存中存在该文章,只更新分值
        for (HotArticleVo hotArticleVo : hotArticleVoList) {
            if (hotArticleVo.getId().equals(apArticle.getId())) {
                hotArticleVo.setScore(score);
                flag = false;
                break;
            }
        }

        //如果缓存中不存在,查询缓存中分值最小的一条数据,进行分值的比较,如果当前文章的分值大于缓存中的数据,就替换
        if (flag) {
            if (hotArticleVoList.size() >= 30) {
                hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());
                HotArticleVo lastHot = hotArticleVoList.get(hotArticleVoList.size() - 1);
                if (lastHot.getScore() < score) {
                    hotArticleVoList.remove(lastHot);
                    HotArticleVo hot = new HotArticleVo();
                    BeanUtils.copyProperties(apArticle, hot);
                    hot.setScore(score);
                    hotArticleVoList.add(hot);
                }

            } else {
                HotArticleVo hot = new HotArticleVo();
                BeanUtils.copyProperties(apArticle, hot);
                hot.setScore(score);
                hotArticleVoList.add(hot);
            }
        }
        //缓存到redis
        hotArticleVoList = hotArticleVoList.stream().sorted(Comparator.comparing(HotArticleVo::getScore).reversed()).collect(Collectors.toList());
        cacheService.set(s, JSON.toJSONString(hotArticleVoList));
    }
}

/**
     * 更新文章行为数量
     * @param mess
     */
private ApArticle updateArticle(ArticleVisitStreamMess mess) {
    ApArticle apArticle = getById(mess.getArticleId());
    apArticle.setCollection(apArticle.getCollection()==null?0:apArticle.getCollection()+mess.getCollect());
    apArticle.setComment(apArticle.getComment()==null?0:apArticle.getComment()+mess.getComment());
    apArticle.setLikes(apArticle.getLikes()==null?0:apArticle.getLikes()+mess.getLike());
    apArticle.setViews(apArticle.getViews()==null?0:apArticle.getViews()+mess.getView());
    updateById(apArticle);
    return apArticle;
}

/**
     * 计算文章的具体分值
     * @param apArticle
     * @return
     */
private Integer computeScore(ApArticle apArticle) {
    Integer score = 0;
    if(apArticle.getLikes() != null){
        score += apArticle.getLikes() * ArticleConstants.HOT_ARTICLE_LIKE_WEIGHT;
    }
    if(apArticle.getViews() != null){
        score += apArticle.getViews();
    }
    if(apArticle.getComment() != null){
        score += apArticle.getComment() * ArticleConstants.HOT_ARTICLE_COMMENT_WEIGHT;
    }
    if(apArticle.getCollection() != null){
        score += apArticle.getCollection() * ArticleConstants.HOT_ARTICLE_COLLECTION_WEIGHT;
    }
    return score;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1010316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】哈希思想的应用——位图、布隆过滤器和哈希切割

前言&#xff1a; 前面我们学习了unordered_map和unordered_set和哈希表哈希桶等&#xff0c;并且我们自己用哈希桶封装了unordered_map和unordered_set。我们知道哈希的查找效率非常高为O(1)&#xff0c;本章我们将延续哈希的思想&#xff0c;共同学习哈希的应用。 目录 &am…

sh脚本工具集锦(文件批量操作、音视频相关)持续更新

1 文件夹目录下所有图片转换成视频文件 pic_2_videos.sh&#xff1a; #!/bin/bash # 放到图片文件夹目录下&#xff0c;把所有jpeg图片推成视频文件 # sh pic_2_videos.sh 0 # 0: pad to 1920*1080 ; 1 or other no pad pad_1920$1if [[ $pad_1920 0 ]] thenfilesls|grep jp…

【Flink】 FlinkCDC读取Mysql( DataStream 方式)(带完整源码,直接可使用)

简介: FlinkCDC读取Mysql数据源,程序中使用了自定义反序列化器,完整的Flink结构,开箱即用。 本工程提供 1、项目源码及详细注释,简单修改即可用在实际生产代码 2、成功编译截图 3、自己编译过程中可能出现的问题 4、mysql建表语句及测试数据 5、修复FlinkCDC读取Mys…

【C++】匿名对象 ① ( 匿名对象引入 | 匿名对象简介 | 匿名对象概念 | 匿名对象作用域 - 对象创建与销毁 )

文章目录 一、匿名对象引入二、匿名对象简介1、匿名对象概念2、匿名对象作用域 - 对象创建与销毁3、代码示例 - 创建并使用匿名对象 一、匿名对象引入 匿名对象引入 : 在上一篇博客 【C】拷贝构造函数调用时机 ② ( 对象值作为函数参数 | 对象值作为函数返回值 ) 中 , 讲到了 如…

【Java基础】- RMI原理和使用详解

【Java基础】- RMI原理和使用详解 文章目录 【Java基础】- RMI原理和使用详解一、什么RMI二、RMI原理2.1 工作原理图2.2 工作原理 三、RMI远程调用步骤3.1 RMI远程调用运行流程图3.2 RMI 远程调用步骤 四、JAVA RMI简单实现4.1 如何实现一个RMI程序4.2 JAVA实现RMI程序 一、什么…

小程序中如何查看指定会员的所有订单?

在小程序中&#xff0c;查看指定会员的所有订单可以通过如下方式实现。 1. 找到指定的会员卡。在管理员后台->会员管理处&#xff0c;找到需要查看订单记录的会员卡。也支持对会员卡按卡号、手机号和等级进行搜索。 2. 查看会员卡详情。点击查看详情进入该会员卡的详情页面…

GTS 中testPersistentProcessMemory fail 详解

0. 前言 GTS 在测试 case armeabi-v7a GtsMemoryTestCases 的时候出现下面异常&#xff0c;本文总结一下。 com.google.android.memory.gts.MemoryTest#testPersistentProcessMemory 1. error log 09-14 09:41:40.523 10182 13340 13359 E TestRunner: failed: testPersiste…

网攻西北工业大学的美国安局人员真实身份锁定!

14日&#xff0c;《环球时报》从国家计算机病毒应急处理中心和360获悉&#xff0c;在侦办西北工业大学网络攻击案过程中&#xff0c;我方成功提取了名为“二次约会”&#xff08;Second Date&#xff09;“间谍”软件的多个样本。在多国业内伙伴通力合作下&#xff0c;现已成功…

【ELK】日志分析系统概述及部署

目录 一、ELK概述 1、ELK是什么&#xff1f; 2、ELK的组成部分 2.1 ElasticSearch &#xff08;1&#xff09;分片和副本 &#xff08;2&#xff09;es和传统数据库的区别 2.2 Kiabana 2.3 Logstash &#xff08;1&#xff09;Log Stash主要组件 2.4 可添加的其它组件 …

Opencv之区域生长和分裂

区域生长 1.基本原理 区域生长法是较为基础的一种区域分割方法 它的基本思想我说的通俗些&#xff0c;即是一开始有一个生长点&#xff08;可以一个像素也可以是一个小区域&#xff09;&#xff0c;从这个生长点开始往外扩充&#xff0c;扩充的意思就是它会把跟自己有相似特征…

Python工程师Java之路(p)Maven聚合和继承

文章目录 依赖管理依赖传递可选依赖和排除依赖 继承与聚合 依赖管理 指当前项目运行所需的jar&#xff0c;一个项目可以设置多个依赖 <!-- 设置当前项目所依赖的所有jar --> <dependencies><!-- 设置具体的依赖 --><dependency><!-- 依赖所属群组…

gmssl v2 用 dgst 命令通过 sm2 签名出的结果,在别的工具上无法验签的问题分析

结论 通过分析发现&#xff0c;导致问题的原因是&#xff1a;gmssl v2 调用的算法不是 sm2 算法。 分析详情 具体情况如下所述 在 gmssl 调用 pkey_ec_init 函数时&#xff0c;默认会把 ec_scheme 设置为 NID_secg_scheme 签名的过程中会调用 pkey_ec_sign 函数&#xff0c…

【Redis】Redis的特性和应用场景 · 数据类型 · 持久化 · 数据淘汰 · 事务 · 多机部署

【Redis】Redis常见面试题&#xff08;3&#xff09; 文章目录 【Redis】Redis常见面试题&#xff08;3&#xff09;1. 特性&应用场景1.1 Redis能实现什么功能1.2 Redis支持分布式的原理1.3 为什么Redis这么快1.4 Redis实现分布式锁1.5 Redis作为缓存 2. 数据类型2.1 Redis…

Day_14 > 指针进阶(3)> bubble函数

目录 1.回顾回调函数 2.写一个bubble_sort函数 2.1认识一下qsort函数 ​编辑2.2写bubble_sort函数 今天我们继续深入学习指针 1.回顾回调函数 我们回顾一下之前学过的回调函数 回调函数就是一个通过函数指针调用的函数 如果你把函数的指针&#xff08;地址&#xff09;…

​Qt for Python 入门¶​

本页重点介绍如何从源代码构建Qt for Python&#xff0c;如果你只想安装PySide2。 与你需要运行&#xff1a;pip pip install pyside2有关更多详细信息&#xff0c;请参阅我们的快速入门指南。此外&#xff0c;您可以 查看与项目相关的常见问题解答。 一般要求 Python&#xf…

博客系统(升级(Spring))(四)(完)基本功能(阅读,修改,添加,删除文章)(附带项目)

博客系统 (三&#xff09; 博客系统博客主页前端后端个人博客前端后端显示个人文章删除文章 修改文章前端后端提取文章修改文章 显示正文内容前端后端文章阅读量功能 添加文章前端后端 如何使用Redis项目地点&#xff1a; 博客系统 博客系统是干什么的&#xff1f; CSDN就是一…

Activity生命周期递归问题查看

这类问题一般比较难分析&#xff0c;符合以下情况的才有可能分析出来&#xff1a; 能够复现并调试有问题时的堆栈以及对应的event log TaskFragment#shouldSleepActivities 方法导致递归 There is a recursion among check for sleep and complete pause during sleeping 关…

dlib库详解及Python环境安装指南

dlib是一个开源的机器学习库&#xff0c;它包含了众多的机器学习算法&#xff0c;例如分类、回归、聚类等。此外&#xff0c;dlib还包含了众多的数据处理、模型训练等工具&#xff0c;使得其在机器学习领域被广泛应用。本文将详细介绍dlib库的基本概念、功能&#xff0c;以及如…

删除数据库

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 语法格式: drop database 数据库名称;这个命令谨慎使用,俗话说:删库跑路! 案列:删除testing数据库,并验证 mysql> show databases; -----------…

Kernel for SQL Database Recovery 21.1 Crack

SQL Server恢复工具 Kernel for SQL Database Recovery 21.1 具有针对不同 SQL Server 版本的全面恢复选项。它具有预览和选择功能来恢复精确的数据库对象。 好处 SQL 数据库恢复可为您带来多种好处。 完全恢复所有数据库组件 将损坏的 MDF/NDF 文件有效恢复到 Live SQL Serve…