Opencv之区域生长和分裂

news2024/12/23 0:19:17

区域生长

1.基本原理

区域生长法是较为基础的一种区域分割方法
它的基本思想我说的通俗些,即是一开始有一个生长点(可以一个像素也可以是一个小区域),从这个生长点开始往外扩充,扩充的意思就是它会把跟自己有相似特征的像素或者区域拉到自己的队伍里,以此壮大自己的势力范围,每次扩大后的势力范围就是一个新的生长点,一直生长一直生长,直到不能生长为止。
所以很容易就能总结出来三个要点:
(1)一个合适的像素或者小区域作为开始的生长点
(2)生长准则,也就是通过什么标准你才能拉他入伙
(3)停止生长的条件 什么时候停止扩充

2.简单例子说明

下面是一个简单的例子:

image.png

3.代码 

import cv2
import numpy as np

####################################################################################


#######################################################################################
class Point(object):

    def __init__(self, x, y):
        self.x = x
        self.y = y

    def getX(self):
        return self.x

    def getY(self):
        return self.y


connects = [
    Point(-1, -1),
    Point(0, -1),
    Point(1, -1),
    Point(1, 0),
    Point(1, 1),
    Point(0, 1),
    Point(-1, 1),
    Point(-1, 0)
]


#####################################################################################
# 计算两个点间的欧式距离
def get_dist(seed_location1, seed_location2):
    l1 = im[seed_location1.x, seed_location1.y]
    l2 = im[seed_location2.x, seed_location2.y]
    count = np.sqrt(np.sum(np.square(l1 - l2)))
    return count


# import Image
im = cv2.imread('./7.jpg')
cv2.imshow('src', im)
im_shape = im.shape
height = im_shape[0]
width = im_shape[1]

print('the shape of image :', im_shape)

# 标记,判断种子是否已经生长
img_mark = np.zeros([height, width])
cv2.imshow('img_mark', img_mark)

# 建立空的图像数组,作为一类
img_re = im.copy()
for i in range(height):
    for j in range(width):
        img_re[i, j][0] = 0
        img_re[i, j][1] = 0
        img_re[i, j][2] = 0
cv2.imshow('img_re', img_re)

# 取一点作为种子点
seed_list = []
seed_list.append(Point(15, 15))
T = 7  # 阈值
class_k = 1  # 类别
# 生长一个类
while (len(seed_list) > 0):
    seed_tmp = seed_list[0]
    # 将以生长的点从一个类的种子点列表中删除
    seed_list.pop(0)

    img_mark[seed_tmp.x, seed_tmp.y] = class_k

    # 遍历8邻域
    for i in range(8):
        tmpX = seed_tmp.x + connects[i].x
        tmpY = seed_tmp.y + connects[i].y

        if (tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= width):
            continue
        dist = get_dist(seed_tmp, Point(tmpX, tmpY))
        # 在种子集合中满足条件的点进行生长
        if (dist < T and img_mark[tmpX, tmpY] == 0):
            img_re[tmpX, tmpY][0] = im[tmpX, tmpY][0]
            img_re[tmpX, tmpY][1] = im[tmpX, tmpY][1]
            img_re[tmpX, tmpY][2] = im[tmpX, tmpY][2]
            img_mark[tmpX, tmpY] = class_k
            seed_list.append(Point(tmpX, tmpY))

########################################################################################
# 输出图像
cv2.imshow('OUTIMAGE', img_re)
cv2.waitKey(0)

 区域生长法的优点是计算简单,对于较均匀的连通目标有较好的分割效果。
缺点是需要人为确定种子点,对噪声敏感,可能导致区域内有空洞。另外当目标较大时,分割速度较慢,因此在设计算法时,要尽量提高效率。

区域分裂和聚合

1.基本原理

分裂和聚合
 

image.png


具体来说 举个例子
区域分裂与聚合就是判断一个区域的均值和方差是不是在人为设定的阈值中,如果是的话这个区域分割出来,不是的话就将这个区域分为左上、右上、左下、右下四个部分再递归判断,直到最后结束。

代码

import cv2 as cv
import numpy as np


class region_div:

    def __init__(self, img):
        self.img = img
        self.res = np.zeros(img.shape)

    def region_div_group(self, range1, range2):
        if range1[1] - range1[0] == 0 or range2[1] - range2[0] == 0:
            return

        mean = self.img[range1[0]:range1[1], range2[0]:range2[1]].mean()
        var = self.img[range1[0]:range1[1], range2[0]:range2[1]].var()
        # print(self.img[range1[0]:range1[1],range2[0]:range2[1]])
        # print(range1, range2, var)
        if var < 10:
            self.res[range1[0]:range1[1], range2[0]:range2[1]] = 255
        else:
            if range1[1] - range1[0] >= 2 and range2[1] - range2[0] >= 2:
                self.region_div_group(
                    [range1[0], (range1[0] + range1[1]) // 2],
                    [range2[0], (range2[0] + range2[1]) // 2])
                self.region_div_group(
                    [(range1[0] + range1[1]) // 2, range1[1]],
                    [range2[0], (range2[0] + range2[1]) // 2])
                self.region_div_group(
                    [range1[0], (range1[0] + range1[1]) // 2],
                    [(range2[0] + range2[1]) // 2, range2[1]])
                self.region_div_group(
                    [(range1[0] + range1[1]) // 2, range1[1]],
                    [(range2[0] + range2[1]) // 2, range2[1]])


image = cv.imread('./8.jpg')
gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
# print(gray.shape)
# print(gray[0:1, 5:11])
res = np.zeros(gray.shape)
rd = region_div(gray)
rd.region_div_group([0, gray.shape[0]], [0, gray.shape[1]])

res = rd.res
cv.namedWindow("gray")
cv.imshow("gray", gray)
cv.waitKey(0)

cv.namedWindow("res")
cv.imshow("res", res)
cv.waitKey(0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1010302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python工程师Java之路(p)Maven聚合和继承

文章目录 依赖管理依赖传递可选依赖和排除依赖 继承与聚合 依赖管理 指当前项目运行所需的jar&#xff0c;一个项目可以设置多个依赖 <!-- 设置当前项目所依赖的所有jar --> <dependencies><!-- 设置具体的依赖 --><dependency><!-- 依赖所属群组…

gmssl v2 用 dgst 命令通过 sm2 签名出的结果,在别的工具上无法验签的问题分析

结论 通过分析发现&#xff0c;导致问题的原因是&#xff1a;gmssl v2 调用的算法不是 sm2 算法。 分析详情 具体情况如下所述 在 gmssl 调用 pkey_ec_init 函数时&#xff0c;默认会把 ec_scheme 设置为 NID_secg_scheme 签名的过程中会调用 pkey_ec_sign 函数&#xff0c…

【Redis】Redis的特性和应用场景 · 数据类型 · 持久化 · 数据淘汰 · 事务 · 多机部署

【Redis】Redis常见面试题&#xff08;3&#xff09; 文章目录 【Redis】Redis常见面试题&#xff08;3&#xff09;1. 特性&应用场景1.1 Redis能实现什么功能1.2 Redis支持分布式的原理1.3 为什么Redis这么快1.4 Redis实现分布式锁1.5 Redis作为缓存 2. 数据类型2.1 Redis…

Day_14 > 指针进阶(3)> bubble函数

目录 1.回顾回调函数 2.写一个bubble_sort函数 2.1认识一下qsort函数 ​编辑2.2写bubble_sort函数 今天我们继续深入学习指针 1.回顾回调函数 我们回顾一下之前学过的回调函数 回调函数就是一个通过函数指针调用的函数 如果你把函数的指针&#xff08;地址&#xff09;…

​Qt for Python 入门¶​

本页重点介绍如何从源代码构建Qt for Python&#xff0c;如果你只想安装PySide2。 与你需要运行&#xff1a;pip pip install pyside2有关更多详细信息&#xff0c;请参阅我们的快速入门指南。此外&#xff0c;您可以 查看与项目相关的常见问题解答。 一般要求 Python&#xf…

博客系统(升级(Spring))(四)(完)基本功能(阅读,修改,添加,删除文章)(附带项目)

博客系统 (三&#xff09; 博客系统博客主页前端后端个人博客前端后端显示个人文章删除文章 修改文章前端后端提取文章修改文章 显示正文内容前端后端文章阅读量功能 添加文章前端后端 如何使用Redis项目地点&#xff1a; 博客系统 博客系统是干什么的&#xff1f; CSDN就是一…

Activity生命周期递归问题查看

这类问题一般比较难分析&#xff0c;符合以下情况的才有可能分析出来&#xff1a; 能够复现并调试有问题时的堆栈以及对应的event log TaskFragment#shouldSleepActivities 方法导致递归 There is a recursion among check for sleep and complete pause during sleeping 关…

dlib库详解及Python环境安装指南

dlib是一个开源的机器学习库&#xff0c;它包含了众多的机器学习算法&#xff0c;例如分类、回归、聚类等。此外&#xff0c;dlib还包含了众多的数据处理、模型训练等工具&#xff0c;使得其在机器学习领域被广泛应用。本文将详细介绍dlib库的基本概念、功能&#xff0c;以及如…

删除数据库

MySQL从小白到总裁完整教程目录:https://blog.csdn.net/weixin_67859959/article/details/129334507?spm1001.2014.3001.5502 语法格式: drop database 数据库名称;这个命令谨慎使用,俗话说:删库跑路! 案列:删除testing数据库,并验证 mysql> show databases; -----------…

Kernel for SQL Database Recovery 21.1 Crack

SQL Server恢复工具 Kernel for SQL Database Recovery 21.1 具有针对不同 SQL Server 版本的全面恢复选项。它具有预览和选择功能来恢复精确的数据库对象。 好处 SQL 数据库恢复可为您带来多种好处。 完全恢复所有数据库组件 将损坏的 MDF/NDF 文件有效恢复到 Live SQL Serve…

HDMI 直通 ILA 调试实验

FPGA教程学习 第十四章 HDMI 直通 ILA 调试实验 文章目录 FPGA教程学习前言实验原理程序设计实验过程实验尝试总结TODO 前言 HDMI 输入直通到 HDMI 输出的显示&#xff0c;完成一个简单的 HDMI 输入输出检测。 实验原理 开发板 HDMI 输出接口芯片使用 ADV7511&#xff0c;HD…

【深度学习】 Python 和 NumPy 系列教程(廿二):Matplotlib详解:2、3d绘图类型(8)3D饼图(3D Pie Chart)

一、前言 Python是一种高级编程语言&#xff0c;由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名&#xff0c;并且具有强大的功能和广泛的应用领域。Python具有丰富的标准库和第三方库&#xff0c;可以用于开发各种类型的应用程序&#xff0c;包括Web开发、数据分…

期权交易保证金比例一般是多少?

期权交易是一种非常受欢迎的投资方式之一&#xff0c;它为期权市场带来了更为多样化和灵活化的交易形式。而其中的期权卖方保证金比例是期权交易中的一个重要指标&#xff0c;直接关系到投资者的风险与收益&#xff0c;下文介绍期权交易保证金比例一般是多少&#xff1f;本文来…

第六章 图 九、拓扑排序

一、AOV网 二、拓扑排序 删除入度为0的结点。 第一次遍历&#xff0c;入度为0的点为0和2&#xff0c;将他们加入排序序列0->2 第二次遍历&#xff0c;入度为0的点为1和4&#xff0c;将他们加入排序序列0->2->1->4 第三次遍历&#xff0c;入度为0的点为3&#xf…

【webrtc】VCMSessionInfo 合并一个可解码的帧

知乎大神的概括&#xff1a;VCMFrameBuffer 帧中包含VCMSessionInfo的处理&#xff0c;对VPX、h264(分析Nalus)的同一帧中的所有包进行过滤并进行完整帧组帧&#xff0c;用于sink给后续的解码。用于解码器的所以插入的数据都是VCMPacketframe_buffer指向一帧的起始数据地址&…

Django系列:Django简介与MTV架构体系概述

Django系列 Django简介与MTV架构体系概述 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/132890054 【介…

企业架构LNMP学习笔记43

memcached的使用&#xff1a; 命令行连接和操作&#xff1a; telnet连接使用&#xff1a; memcached默认使用启动服务占用tcp 11211端口&#xff0c;可以通过telnet进行连接使用。 安装telnet进行连接&#xff1a; 连接成功&#xff0c;敲击多次&#xff0c;如果看到error&…

Linux常用命令字典篇

Linux命令 1. 翻页查看文件 less [-N] 文件名&#xff1a;可以向后翻页&#xff0c;也可以向前翻页&#xff0c;-N表示显示行号 more 文件名&#xff1a;仅可以向后翻页 2. 端口占用信息查看 netstat -tunlp | grep 端口号&#xff1a;查看端口号对应的信息 lsof i: 端口号…

Marin说PCB之封装设计系列---(02)--异形焊盘的封装设计总结

每天下班回家看电视本来是一件很美好的事情&#xff0c;可是正当我磕着瓜子看着异人之下的时候&#xff0c;手机突然响起来了&#xff0c;我以为是我们组哪个同事找我呢。一接电话居然是我的老朋友陈世美陈总&#xff0c;江湖人称少妇杀手。给我打电话主要是说他最近遇到一个异…

vite和webpack的区别

vite和webpack的区别 1、前言2、Webpack2.1 Webpack简述2.2 Webpack常用插件 3、Vite3.1 Vite简述3.2 Vite插件推荐 4、区别4.1 开发模式不同4.2 打包效率不同4.3 插件生态不同4.4 配置复杂度不同4.5 热更新机制不同 5、总结 1、前言 Webpack和Vite是现代前端开发中非常重要的…