🚀 作者 :“大数据小禅”
🚀 文章简介 :新老用户分析:按照操作系统维度进行新老用户的分析
🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬
目录导航
- 同类产品参考
- 日志的数据格式
- 需求:按照操作系统维度进行新老用户的分析
- 分析结果
同类产品参考
日志的数据格式
{
"deviceType":"iPhone 10",
"uid":"user_1",
"product":{
"name":"宝马",
"category":"车"
},
"os":"iOS",
"ip":"171.11.85.21",
"nu":1,
"channel":"华为商城",
"time":1735419335423,
"event":"browse",
"net":"WiFi",
"device":"4759947c-cd47-433c-ac8f-ae923a6d38b6",
"version":"V1.2.0"
}
需求:按照操作系统维度进行新老用户的分析
-
关键字:操作系统 OS 老用户nu
-
维度先从单一的开始 扩展:操作系统 省份的维度
-
写入数据到Redis 官方文档https://bahir.apache.org/docs/flink/current/flink-streaming-redis/
-
<dependency> <groupId>org.apache.bahir</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>1.0</version> </dependency>
-
代码
public class OsUserCntAppV1 {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> stream = environment.readTextFile("data/access.json");
environment.setParallelism(1); //设置并行度为1方便观察
SingleOutputStreamOperator<Access> filter = stream.map(new MapFunction<String, Access>() {
@Override
public Access map(String s) throws Exception {
// json 转 Access
try {
return JSON.parseObject(s, Access.class);
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
//这里是只要不为空的数据 x != null等于把上面的空的数据过滤掉
}).filter(x -> x != null).filter(new FilterFunction<Access>() {
@Override
public boolean filter(Access access) throws Exception {
//只过滤出来 event='startup'的数据
return "startup".equals(access.event);
}
});
//Access{device='6d27244c-b5e5-4520-9c6d-c4e17e2391fe', deviceType='iPhone 9', os='iOS', event='startup', net='4G', channel='华为商城', uid='user_36', nu=0, nu2=0, ip='123.232.241.201', time=1735419335573, version='V1.2.0', province='null', city='null', product=null}
// 操作系统维度 新老用户
//返回三元组 (操作系统 新老用户 数字1)
SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> sum = filter.map(new MapFunction<Access, Tuple3<String, Integer, Integer>>() {
@Override
public Tuple3<String, Integer, Integer> map(Access access) throws Exception {
return Tuple3.of(access.os, access.nu, 1);
}
//根据OS操作系统 与 字段nu新老用户分组 传入三元组返回二元组
//因为是按照Tuple2<String, Integer>这两个进行keyby 所以进入三元组出去二元组
}).keyBy(new KeySelector<Tuple3<String, Integer, Integer>, Tuple2<String, Integer>>() {
@Override
public Tuple2<String, Integer> getKey(Tuple3<String, Integer, Integer> value) throws Exception {
return Tuple2.of(value.f0, value.f1);
}
/**
* (Android,1,1)
* (iOS,1,1)
* (iOS,0,1)
*/
//根据第三个字段进行聚合
}).sum(2);
//结果
/**
* (Android,1,23)
* (Android,0,13)
* (iOS,0,20)
*/
//单机redis 出现连接超时->修改redis.conf配置文件 bing IP
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("192.168.192.100").build();
sum.addSink(new RedisSink<>(conf,new RedisSinkForV1()));
environment.execute("OsUserCntAppV1");
}
}
分析结果