线性代数的本质(一)

news2025/4/4 3:24:05

文章目录

  • 向量空间
    • 向量及其性质
    • 基与维数
    • 向量的坐标运算

《线性代数的本质》 - 3blue1brown
高中数学A版选修4-2 矩阵与变换
《线性代数及其应用》(第五版)
《高等代数简明教程》- 蓝以中

向量空间

In the beginning Grant created the space. And Grant said, Let there be vector: and there was vector.

向量及其性质

三维几何空间中的一个有向线段称为向量(vector)。本文统一用 a , b , c , k , λ a,b,c,k,\lambda a,b,c,k,λ 表示标量,小写黑体字母 u , v , w , a , b , x \mathbf u,\mathbf v,\mathbf w,\mathbf a,\mathbf b,\mathbf x u,v,w,a,b,x 表示向量。

向量通常定义两种运算:加法和数乘。加法遵循三角形法则(平行四边形法则),数乘被称为缩放(scaling)。运算法则如下图

性质:根据向量的几何性质可证明向量的加法和数乘满足以下八条性质:

  1. 加法交换律: v + w = w + v \mathbf v+\mathbf w=\mathbf w+\mathbf v v+w=w+v
  2. 加法结合律: u + ( v + w ) = ( u + v ) + w \mathbf u+(\mathbf v+\mathbf w)=(\mathbf u+\mathbf v)+\mathbf w u+(v+w)=(u+v)+w
  3. 加法单位元: ∃ 0 ∈ V ,   0 + v = v \exists 0\in V,\ 0+\mathbf v=\mathbf v 0V, 0+v=v
  4. 加法逆元: ∃ ( − v ) ∈ V ,   v + ( − v ) = 0 \exists (-\mathbf v)\in V,\ \mathbf v+(-\mathbf v)=0 (v)V, v+(v)=0
  5. 数乘结合律: a ( b v ) = ( a b ) v a(b\mathbf v)=(ab)\mathbf v a(bv)=(ab)v
  6. 数乘分配律: a ( v + w ) = a v + a w a(\mathbf v+\mathbf w)=a\mathbf v+a\mathbf w a(v+w)=av+aw
  7. 数乘分配律: ( a + b ) v = a v + b v (a+b)\mathbf v=a\mathbf v+b\mathbf v (a+b)v=av+bv
  8. 数乘单位元: ∃ 1 ∈ F ,   1 v = v \exists 1\in\mathbb F,\ 1\mathbf v=\mathbf v 1F, 1v=v

向量空间是三维几何空间向高维空间的推广。线性代数中,每个向量都以坐标原点为起点,那么任何一个向量就由其终点唯一确定。从而,向量和空间中的点一一对应。因此,空间也可以看成由所有向量组成的集合,并且集合中的元素可以进行加法和数乘运算。于是,便有了向量空间的抽象定义。

向量空间: 设 V V V n n n 维向量的非空集合 F \mathbb F F 是一个数域,若 V V V 对于向量的加法和数乘两种运算封闭,那么称集合 V V V 为数域 F F F 上的向量空间(vector space)。所谓封闭是指

  1. ∀ v , w ∈ V ,   v + w ∈ V \forall\mathbf v,\mathbf w\in V,\ \mathbf v+\mathbf w\in V v,wV, v+wV
  2. ∀ v ∈ V , c ∈ F ,   c v ∈ V \forall\mathbf v\in V, c\in F,\ c\mathbf v\in V vV,cF, cvV

线性代数中的数域通常取全体实数,即 F = R \mathbb F=\R F=R

例如: n n n维向量的全体生成实数域上的向量空间

R n = { x = ( x 1 , x 2 , ⋯   , x n ) ∣ x 1 , x 2 , ⋯   , x n ∈ R } \R^n=\{\mathbf x=(x_1,x_2,\cdots,x_n)\mid x_1,x_2,\cdots,x_n\in\R\} Rn={x=(x1,x2,,xn)x1,x2,,xnR}

子空间:设 U U U 是向量空间 V V V 的一个非空子集,如果 U U U中的线性运算封闭,则 U U U 也是向量空间,称为 V V V子空间

基与维数

仿照解析几何的基本方法,建立一个坐标系,实现空间内的点与有序实数对一一对应,从而空间内的向量与有序实数对也一一对应,这样就可以用代数方法来研究向量的性质。

为方便建立空间的坐标系,先定义几个概念。

定义:取向量空间 V V V 内一个向量组 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar

  1. 向量 x 1 a 1 + x 2 a 2 + ⋯ + x r a r x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r x1a1+x2a2++xrar 称为向量组的一个线性组合(linear combination)

  2. 向量组的所有线性组合构成的向量集称为由该向量组张成的空间,记作
    span { a 1 , ⋯   , a n } = { x 1 a 1 + ⋯ + x n a n ∣ x 1 , ⋯   , x n ∈ R } \text{span}\{\mathbf a_1,\cdots,\mathbf a_n\}=\{x_1\mathbf a_1+\cdots+x_n\mathbf a_n\mid x_1,\cdots,x_n\in\R\} span{a1,,an}={x1a1++xnanx1,,xnR}
    如下图,若 u , v ∈ R 3 \mathbf u,\mathbf v\in\R^3 u,vR3 不共线,则 span { u , v } \text{span}\{\mathbf u,\mathbf v\} span{u,v} R 3 \R^3 R3中包含 u , v \mathbf u,\mathbf v u,v 和原点的平面,图示

  3. 当且仅当系数 x 1 = x 2 = ⋯ = x r = 0 x_1=x_2=\cdots=x_r=0 x1=x2==xr=0 时,线性组合为零
    x 1 a 1 + x 2 a 2 + ⋯ + x r a r = 0 x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_r\mathbf a_r=0 x1a1+x2a2++xrar=0
    则称向量组线性无关(linearly independence)。反之,如果存在不全为零的数使上式成立,则称向量组线性相关(linearly dependence)。

定理:若向量 v \mathbf v v 可由线性无关的向量组 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性表示,则表示系数是唯一的。

证明:设向量 v \mathbf v v 有两组表示系数
b = k 1 a 1 + k 2 a 2 + ⋯ + k r a r b = l 1 a 1 + l 2 a 2 + ⋯ + l r a r \mathbf b=k_1\mathbf a_1+k_2\mathbf a_2+\cdots+k_r\mathbf a_r \\ \mathbf b=l_1\mathbf a_1+l_2\mathbf a_2+\cdots+l_r\mathbf a_r b=k1a1+k2a2++krarb=l1a1+l2a2++lrar
则有
( k 1 − l 1 ) a 1 + ( k 1 − l 2 ) a 2 + ⋯ + ( k 1 − l r ) a r = 0 (k_1-l_1)\mathbf a_1+(k_1-l_2)\mathbf a_2+\cdots+(k_1-l_r)\mathbf a_r=0 (k1l1)a1+(k1l2)a2++(k1lr)ar=0
因为 a 1 , a 2 , ⋯   , a r \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_r a1,a2,,ar 线性无关,故必有
k 1 − l 1 = k 1 − l 1 = ⋯ = k 1 − l 1 = 0 k_1-l_1=k_1-l_1=\cdots=k_1-l_1=0 k1l1=k1l1==k1l1=0
即表示系数是唯一的。

接下来,我们自然想用一组线性无关的向量来张成整个向量空间。

向量空间的基:张成向量空间 V V V的一个线性无关的向量集合称为该空间的一组(basis)。基向量组所含向量的个数,称为向量空间 V V V维数(dimension),记为 dim ⁡ V \dim V dimV

可以证明,向量空间的任意一组基的向量个数是相等的。
单由零向量组成的向量空间 { 0 } \{0\} {0}称为零空间。零空间的维数定义为零。

基定理 n n n 维向量空间的任意 n n n 个线性无关的向量构成空间的一组基。

向量的坐标运算

向量空间选定了基向量后,空间中全体向量的集合与全体有序实数组的集合之间就建立了一一 对应的关系。

坐标:设向量组 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 是线性空间 V V V 的一组基,则空间内任一向量 v ∈ V \mathbf v\in V vV 都可表示为基向量的唯一线性组合
v = x 1 a 1 + x 2 a 2 + ⋯ + x n a n \mathbf v=x_1\mathbf a_1+x_2\mathbf a_2+\cdots+x_n\mathbf a_n v=x1a1+x2a2++xnan
有序数组 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 称为向量 v \mathbf v v 在基 a 1 , a 2 , ⋯   , a n \mathbf a_1,\mathbf a_2,\cdots,\mathbf a_n a1,a2,,an 下的坐标,一般记作
[ x 1 x 2 ⋮ x n ] or ( x 1 , x 2 , ⋯   , x n ) \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\quad \text{or}\quad (x_1,x_2,\cdots,x_n) x1x2xnor(x1,x2,,xn)
类似于三维几何空间,由 n n n个有序数构成的向量称为 n n n维向量。

例:设 v 1 = [ 3 6 2 ] , v 2 = [ − 1 0 1 ] , x = [ 3 12 7 ] \mathbf v_1=\begin{bmatrix}3\\6\\2\end{bmatrix},\mathbf v_2=\begin{bmatrix}-1\\0\\1\end{bmatrix},\mathbf x=\begin{bmatrix}3\\12\\7\end{bmatrix} v1=362,v2=101,x=3127 。判断 x \mathbf x x 是否在 H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,如果是,求 x \mathbf x x 相对于基向量 B = { v 1 , v 2 } B=\{\mathbf v_1,\mathbf v_2\} B={v1,v2} 的坐标。

解:如果 x \mathbf x x H = span  { v 1 , v 2 } H=\text{span }\{\mathbf v_1,\mathbf v_2\} H=span {v1,v2} 中,则下列方程是有解的
c 1 [ 3 6 2 ] + c 2 [ − 1 0 1 ] = [ 3 12 7 ] c_1\begin{bmatrix}3\\6\\2\end{bmatrix}+c_2\begin{bmatrix}-1\\0\\1\end{bmatrix}=\begin{bmatrix}3\\12\\7\end{bmatrix} c1362+c2101=3127
如果数 c 1 , c 2 c_1,c_2 c1,c2存在,则它们是 x \mathbf x x 相对于 B B B 的坐标。由初等行变换得
[ 3 − 1 3 6 0 12 2 1 7 ] → [ 1 0 2 0 1 3 0 0 0 ] \begin{bmatrix}\begin{array}{cc:c} 3&-1&3\\6&0&12\\2&1&7 \end{array}\end{bmatrix}\to \begin{bmatrix}\begin{array}{cc:c} 1&0&2\\0&1&3\\0&0&0 \end{array}\end{bmatrix} 3621013127100010230
于是, x \mathbf x x 相对于 v 1 , v 2 \mathbf v_1,\mathbf v_2 v1,v2 的坐标
v B = [ 3 2 ] \mathbf v_B=\begin{bmatrix}3\\2\end{bmatrix} vB=[32]

有时为了区分坐标的基向量,向量 v \mathbf v v 在基 B = { b 1 , b 2 , ⋯   , b n } B=\{\mathbf b_1,\mathbf b_2,\cdots,\mathbf b_n\} B={b1,b2,,bn} 下的坐标,记作 v B \mathbf v_B vB

建立了坐标之后, V V V中抽象的向量 v \mathbf v v R n \R^n Rn中具体的数组 ( x 1 , x 2 , ⋯   , x n ) T (x_1,x_2,\cdots,x_n)^T (x1,x2,,xn)T 实现了一一对应,并且向量的线性运算也可以表示为坐标的线性运算。

v , w ∈ V \mathbf v,\mathbf w\in V v,wV,有
v = v 1 a 1 + v 2 a 2 + ⋯ + v n a n w = w 1 a 1 + w 2 a 2 + ⋯ + w n a n \mathbf v=v_1\mathbf a_1+v_2\mathbf a_2+\cdots+v_n\mathbf a_n\\ \mathbf w=w_1\mathbf a_1+w_2\mathbf a_2+\cdots+w_n\mathbf a_n v=v1a1+v2a2++vnanw=w1a1+w2a2++wnan

向量加法运算
v + w = ( v 1 + w 1 ) a 1 + ( v 2 + w 2 ) a 2 + ⋯ + ( v n + w n ) a n \mathbf v+\mathbf w=(v_1+w_1)\mathbf a_1+(v_2+w_2)\mathbf a_2+\cdots+(v_n+w_n)\mathbf a_n v+w=(v1+w1)a1+(v2+w2)a2++(vn+wn)an
即对应的坐标运算为
[ v 1 v 2 ⋮ v n ] + [ w 1 w 2 ⋮ w n ] = [ v 1 + w 1 v 2 + w 2 ⋮ v n + w n ] \begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}+ \begin{bmatrix}w_1\\ w_2\\ \vdots \\ w_n\end{bmatrix}= \begin{bmatrix}v_1+w_1\\ v_2+w_2\\ \vdots \\ v_n+w_n\end{bmatrix} v1v2vn+w1w2wn=v1+w1v2+w2vn+wn

向量数乘运算
c v = ( c v 1 ) a 1 + ( c v 2 ) a 2 + ⋯ + ( c v n ) a n c\mathbf v=(cv_1)\mathbf a_1+(cv_2)\mathbf a_2+\cdots+(cv_n)\mathbf a_n cv=(cv1)a1+(cv2)a2++(cvn)an
即对应的坐标运算为
c [ v 1 v 2 ⋮ v n ] = [ c v 1 c v 2 ⋮ c v n ] c\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}= \begin{bmatrix}cv_1\\ cv_2\\ \vdots \\ cv_n\end{bmatrix} cv1v2vn=cv1cv2cvn

向量的坐标取值依托于坐标系的基向量。选取的基向量不同,其所对应的坐标值就不同。当然,基向量自身的坐标总是:

e 1 = [ 1 0 ⋮ 0 ] , e 2 = [ 0 1 ⋮ 0 ] , ⋯   , e n = [ 0 0 ⋮ 1 ] , \mathbf e_1=\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix},\quad \mathbf e_2=\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix},\quad \cdots,\quad \mathbf e_n=\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix},\quad e1=100,e2=010,,en=001,
这种坐标形式通常称为标准向量组(或单位坐标向量组)。

总之,在 n n n维向量空间 V n V_n Vn 中任取一组基,则 V n V_n Vn 中的向量与 R n \R^n Rn 中的数组之间就有一一对应的关系,且这个对应关系保持线性组合(线性运算)的一一对应。接下来我们将默认使用标准坐标系:坐标原点为 O O O,基向量组为 e 1 , e 2 , ⋯   , e n \mathbf e_1,\mathbf e_2,\cdots,\mathbf e_n e1,e2,,en后续将对向量实体和坐标不做区分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1001301.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ClickHouse进阶(十二):Clickhouse数据字典-2-字典类型

进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术,IT贫道_大数据OLAP体系技术栈,Apache Doris,Kerberos安全认证-CSDN博客 📌订阅…

buuctf crypto 【[GXYCTF2019]CheckIn】解题记录

1.打开文件,发现密文 2.一眼base64,解密一下 3.解密后的字符串没有什么规律,看了看大佬的wp,是rot47加密,解密一下(ROT5、ROT13、ROT18、ROT47位移编码)

第一章 计算机系统概述 五、中断和异常、系统调用

目录 一、中断的作用 二、中断的类型 1、内中断(异常) 2、外中断 三、中断机制的基本原理 四、系统调用 1、定义: 2、与库函数的区别 3、按功能分类 4、作用 一、中断的作用 1、“中断”是让操作系统内核夺回CPU使用权的唯一途径 …

防火墙防火墙

什么是防火墙 防火墙是一种网络安全设备或软件,用于监控和控制网络流量,以保护网络免受未经授权的访问、恶意攻击和数据泄露等威胁。 防火墙的作用 1. 访问控制:防火墙可以根据规则和策略,限制和过滤网络流量,只允许经…

Python基础教程:序列排序

前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 话不多说,直接开搞,如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 正文 python中,一般在涉及到列表排序时,都用内置的sort()方法或者全局的sorted()方法&#xff0c…

想要精通算法和SQL的成长之路 - 相交链表

想要精通算法和SQL的成长之路 - 相交链表 前言一. 相交链表(双指针) 前言 想要精通算法和SQL的成长之路 - 系列导航 一. 相交链表(双指针) 原题链接 思路如下: 1.我们假设 headA链表的长度为 a。headB链表的长度为b…

算法通关村18关 | 回溯模板如何解决分割回文串问题

1. 分割回文串 题目 LeetCode131 分割回文串,给你一个字符串s,请你将s分割成一些字串,使每个字串都是回文串,返回s所有可能的分割方案。 回文串是正着和反着读都是一样的字符串。 思路 知道回溯的模板,用回溯的角度思…

Ceph入门到精通-ceph对于长文件名如何处理

RADOS object with short name 上一篇博文,我们将介绍了对象相关的数据结构ghobject_t,以及对象在底层文件系统存储的文件名,以及如何从文件名对应到 ghobject_t对象。 映射关系如下图所示: 这里面有一个漏洞,即obje…

云服务器与内网穿透有什么区别?哪个好用?

云服务器与内网穿透有什么区别,哪个好用?如何在自己公网IP云主机上部署搭建P2P穿透?这里给大家汇总介绍一下,供大家共同学习了解。 云服务器的一些特点: 需要数据上云场景时,通常可以选择使用云服务器。 …

JavaScript的内置类

一、认识包装类型 1.原始类型的包装类 JavaScript的原始类型并非对象类型,所以从理论上来说,它们是没有办法获取属性或者调用方法的。 但是,在开发中会看到,我们会经常这样操作: var message "hello world&q…

Android:viewPage+Fragment实现模拟微信首页

一、前言&#xff1a;虽然现在很多已经不这么写了&#xff0c;但是这是最底层的东西&#xff0c;我想我还是要好好理解一下的。这篇代码是模拟微信首页底部按钮和ViewPage的联动。记录一下&#xff01;&#xff01; 二、代码理解&#xff1a; 主页面布局 <?xml version&…

积木报表 JimuReport v1.6.2-GA版本发布—高危SQL漏洞安全加固版本

项目介绍 一款免费的数据可视化报表&#xff0c;含报表和大屏设计&#xff0c;像搭建积木一样在线设计报表&#xff01;功能涵盖&#xff0c;数据报表、打印设计、图表报表、大屏设计等&#xff01; Web 版报表设计器&#xff0c;类似于excel操作风格&#xff0c;通过拖拽完成报…

安防监控/视频汇聚/云存储/AI智能视频分析平台EasyCVR显示CPU过载,该如何解决?

视频云存储/安防监控/视频汇聚平台EasyCVR基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。安防视频监控系统EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、云…

主品牌老化:企业增长面临的关键挑战——《主品牌进化战略》节选

在今天&#xff0c;大部分行业的竞争环境已经从匀速变化迭代为加速变化&#xff0c;主品牌老化成为企业增长面临的重要挑战&#xff0c;这一点已经变得非常明显。技术革新、产业革命以及顾客需求的演变势不可挡&#xff0c;跨周期竞争已经成为常态。在这种情况下&#xff0c;企…

React 展开运算符

0x00 前言 CTF 加解密合集CTF Web合集网络安全知识库溯源相关 文中工具皆可关注 皓月当空w 公众号 发送关键字 工具 获取 0x01 展开运算符 1. 展开数组 <script type"text/javascript">let arr1 [1,3,5,7,9]let arr2 [2,4,6,8,10]console.log(...arr1)&l…

OSPF协议LSDB同步过程和邻居状态机

【微|信|公|众|号&#xff1a;厦门微思网络】 华为HCIA试听课程&#xff1a;网络工程师的基本功&#xff1a;网络地址转换NAT https://mp.weixin.qq.com/s/jJRRSj3EdjFHrXCAqRCVeg 华为HCIP试听课程&#xff1a;华为HCIP必考题&#xff1a;DHCP协议原理与配置https://mp.weixi…

ICC2: ICG clone与ICG merge

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 默认情况下,initial_place阶段或者在spg flow的initial_opt阶段工具会自动merge clock gating cell。但是如果在place_opt之前使用merge_clock_gates命令了,place阶段就不会再merge clock gate了。…

Linux中断底半部机制总结

linux实现底半部的机制主要有tasklet、workqueue、softirq。 1.tasklet tasklet的使用较为简单&#xff0c;它的执行上下文是软中断&#xff0c;所以在tasklet中不能睡眠&#xff0c;它的执行时机通常是中断顶半部返回的时候。我们只需要定义tasklet及其处理函数&#xff0c;…

【管理运筹学】第 7 章 | 图与网络分析(4,最大流问题)

系列文章目录 【管理运筹学】第 7 章 | 图与网络分析&#xff08;1&#xff0c;图论背景以及基本概念、术语、矩阵表示&#xff09; 【管理运筹学】第 7 章 | 图与网络分析&#xff08;2&#xff0c;最小支撑树问题&#xff09; 【管理运筹学】第 7 章 | 图与网络分析&#xf…

健身小程序制作流程详解

随着移动互联网的普及&#xff0c;越来越多的人开始关注健康和健身。为了满足这一需求&#xff0c;制作一款健身小程序已经成为一种趋势。本文将详细介绍如何使用第三方制作平台&#xff0c;如乔拓云网&#xff0c;制作健身小程序&#xff0c;让你轻松成为专家。 一、注册与登录…