【面试经典150 | 双指针】两数之和

news2024/12/24 3:59:18

文章目录

  • 写在前面
  • Tag
  • 题目来源
  • 题目解读
  • 解题思路
    • 方法一:暴力枚举
    • 方法二:哈希表
    • 方法三:二分法
    • 方法四:双指针
  • 知识回顾
  • 写在最后

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【双指针】【二分法】【哈希表】【数组】


题目来源

面试经典150 | 167. 两数之和 II - 输入有序数组


题目解读

给定一个下标从 1 开始按照 非递减顺序排列 的整数数组 numbers,找出两数之和等于 target 的两个数,返回它们的下标,其中每个整数只能使用一次,题目保证只有唯一的答案。


解题思路

本题属于基础题,与 1. 两数之和 解法基本一致。现在有三种解法如下。

方法一:暴力枚举

一个比较容易想到的方法就是枚举所有可能的两数组合,使用两层枚举,第一层枚举第一个整数,第二层枚举第二个整数。本题的数据量为 1 0 4 10^4 104,两层枚举的时间复杂度为 1 0 8 10^8 108,勉强可以通过。

具体地,在枚举中判断两数之和是否等于 target,如果相等,直接返回对应的下标。

因为每个元素只可以使用一次,并且两数先后出现的顺序没有要求,因此
第二层枚举的整数可以从第一层枚举的整数的后一个位置开始。

实现代码

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        int n = numbers.size();
        for (int i = 0; i < n; ++i) {
            for (int j = i+1; j < n; ++j) {
                if (numbers[i] + numbers[j] == target) {
                    return {i + 1, j + 1};
                }
            }
        }
        return {-1, -1};    // 本题保证一定有解,程序不会运行到此处
    }
};

但是实测中,最后几个测试用例超时了!

复杂度分析

时间复杂度: O ( n 2 ) O(n^2) O(n2)

空间复杂度: O ( 1 ) O(1) O(1)

方法二:哈希表

方法一中的时间复杂度可以优化到 O ( n l o g n ) O(nlogn) O(nlogn) O ( n ) O(n) O(n),先来介绍时间复杂度为 O ( n ) O(n) O(n) 的方法,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 的方法将在方法三中介绍。

我们在枚举第二个整数的时候,可以事先用一个哈希表来记录下所有整数以及位置,这样枚举第二个整数的时间复杂度可以降为 O ( 1 ) O(1) O(1),但是需要一个额外的空间。

具体地,可以先一次遍历 numbers,记录每个整数以及下标;记录完毕后,枚举第一个加数,在哈希表中查找第二个加数;以上的过程可以用一个循环就可以解决:枚举第一个加数之后,先在哈希表中查询有么有合适的第二个加数,然后再将当前的加数放入哈希表中,这样可以省去一次 for 循环。

实现代码

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        unordered_map<int, int> idx;
        for (int i = 0; i < numbers.size(); ++i) {
            if (idx.find(target - numbers[i]) != idx.end()) {
                int idx1 = min(i, idx[target - numbers[i]]);
                int idx2 = max(i, idx[target - numbers[i]]);
                return {idx1 + 1, idx2 + 1};
            }
            idx[numbers[i]] = i;
        }
        return {-1, -1};
    }
};

复杂度分析

时间复杂度: O ( n ) O(n) O(n) n n n 为数组 numbers 的长度,只要一次循环就可以枚举两个加数。

空间复杂度: O ( n ) O(n) O(n),记录整数以及位置所用的空间。

方法三:二分法

在方法二中,我们是利用哈希表来降低枚举的线性时间的,我们还可以使用二分方法来降低线性枚举的时间复杂度。

前面两种方法中,都没有用到题目中 非递减顺序排列 这一条件,我们可以利用这种有序性进行二分查找第二个加数。

具体地,枚举第一个加数,假设下标为 i,接着要在 numbers[i+1,...,n-1] 中使用二分法查找 target - numbers[i],如果查找到直接返回两个加数的对应下标,否则继续枚举第一个数查找。

实现代码

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        int n = numbers.size();
        for (int i = 0; i < numbers.size(); ++i) {
            int num1 = numbers[i];
            auto it = find(numbers.begin() + i + 1, numbers.end(), target - num1);
            if (it != numbers.end()) {
                int j = it - numbers.begin();
                return {i + 1, j + 1};
            }
        }
        return {-1, -1};
    }
};

复杂度分析

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),枚举第一个数的时间复杂度为 O ( n ) O(n) O(n),在每次枚举中最坏需要二分查找 O(logn) 次,才能找到合适的第二个加数。

空间复杂度: O ( 1 ) O(1) O(1)

方法四:双指针

以上三种都不是最优的,现在介绍时间复杂度和空间复杂度都是最优的方法——双指针。

初始左右两个指针 l e f t left left r i g h t right right 分别指向 numbers 的第一个位置和最后一个位置。每次计算两个指针指向的整数之和,与 target 进行比较:

  • 如果 numbers[left] + numbers[right] = target,直接返回 {left + 1, right + 1}(因为下标从 1 开始);
  • 如果 numbers[left] + numbers[right] > target,则将 right 指针左移一位;
  • 如果 numbers[left] + numbers[right] < target,则将 left 指针右移移位。

为什么两数之和小了,右移 left 就可以了,右移 right 不可以吗?为什么两数之和大了,左移 right 就可以了,左移 left 不可以吗?

假设 numbers[i] + numbers[j] = target 是唯一解,其中 0 <= i < j <= n-1。初始时 left = 0right = n-1,除非初始的时候,左右两个指针已经位于 ij 处,否则一定是左指针先到达下标 i,或者右指针先到达下标 j

  • 左指针先到达下标 i 时,右指针还在 j 的右侧,此时 numbers[left] + numbers[right] > target,于是需要将 right 指针左移一位,这样才能缩小两数之和;
  • 右指针先到达下标 j时,左指针还在 i 的左侧,此时 numbers[left] + numbers[right] < target,于是需要将 left 指针右移一位,这样才能增加两数之和。

于是,就有了以上所示的双指针更新规则。

实现代码

class Solution {
public:
    vector<int> twoSum(vector<int>& numbers, int target) {
        int n = numbers.size();
        int l = 0, r = n - 1;
        while (l <= r) {
            int sum = numbers[l] + numbers[r];
            if (sum > target) {
                --r;
            }
            else if (sum < target) {
                ++l;
            }
            else {
                return {l+1, r+1};
            }
        }

        return {-1, -1};
    }
};

复杂度分析

时间复杂度: O ( n ) O(n) O(n),双指针相向移动,它们 一共最多走 n 次。

空间复杂度: O ( 1 ) O(1) O(1),使用的额外变量只有两个指针。


知识回顾

今天来看看 C++ \texttt{C++} C++ 中二分查找的几个 API。

find() 使用二分法来查找数组中指定值的位置,其返回的是迭代器:

  • 如果顺利查找到指定元素,则返回该元素位置迭代器;
  • 如果没有查找到指定元素,则返回尾后迭代器;

通过位置迭代器与首位置迭代器作差可以得到该元素在数组中的位置。

lower_bound()upper_bound() 的含义与用法可以参考 【二分查找】几种基本题型,你会了吗?。


写在最后

如果文章内容有任何错误或者您对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度方法,欢迎评论区交流。

最后,感谢您的阅读,如果感到有所收获的话可以给博主点一个 👍 哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1000172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[NLP]LLM--使用LLama2进行离线推理

一 模型下载 二 模型推理 本文基于Chinese-LLaMA-Alpaca-2项目代码介绍&#xff0c;使用原生的llama2-hf 克隆好了Chinese-LLaMA-Alpaca-2 项目之后&#xff0c;基于GPU的部署非常简单。下载完成以后的模型参数(Hugging Face 格式)如下&#xff1a; 简单说明一下各个文件的作…

【精品】git commit 代码规范

规范 格式&#xff1a; type(scope) : subject type&#xff08;必须&#xff09; : commit 的类别&#xff0c;只允许使用下面几个标识&#xff1a; feat : 新功能fix : 修复bugdocs : 文档改变style : 代码格式改变refactor : 某个已有功能重构perf : 性能优化test : 增加测…

6.2.2 【MySQL】InnoDB中的索引方案

上边之所以称为一个简易的索引方案&#xff0c;是因为我们为了在根据主键值进行查找时使用二分法快速定位具体的目录项而假设所有目录项都可以在物理存储器上连续存储&#xff0c;但是这样做有几个问题&#xff1a; InnoDB 是使用页来作为管理存储空间的基本单位&#xff0c;也…

未来3-5年,前端低代码化,具体往哪个方向发展更好就业?

最近发现一个有趣的现象&#xff0c;好像是要紧追AIGC的速度一样&#xff0c;我的朋友圈也是越来越多人每天抒发关于“前端开发新方向”的见解。 且其中不仅是关于AI的讨论&#xff0c;还把不少资深人士把低代码也拉出来溜了一圈&#xff0c;不仅是开发人员&#xff0c;产品经理…

构建企业分支网络

构建企业分支网络 目录 1.1 项目背景 1.2 项目拓扑 1.3 项目需求 1.4 设备选型 1.5 技术选型 1.6 地址规划 1.6.1 交换设备地址规划表 1.6.2 路由设备地址规划表 1.6.3 ISP设备地址规划表 1.6.4 终端地址规划表 1.6.4.1 VLAN 规划 1.7 VLAN 规划 1.8 项目实施 1.…

git撤回 不小心 commit 进去的文件

我时候 我们可能讲一下不想提交的文件 不小心commit了进去 我们可以通过 git reset HEAD~来撤回刚才的添加记录

iNeuOS工业互联网操作系统V5,视图建模(WEB组态)升级

针对工业来讲&#xff0c;特殊是流程行业&#xff0c;视图建模&#xff08;Web组态&#xff09;是必不可少应用场景&#xff0c;因为有很多工序要直观的展示工艺流程图。 对于一个工厂&#xff0c;少则几十张工艺流程图&#xff0c;多则上百张工艺流程图&#xff0c;还得支持灵…

被逼出来的自主可控,从华为自研看国产 IDE 的未来和商业模式

华为的自研 IDE 之路 我所在的部门“华为云 PaaS 服务产品部”在软件开发工具领域肩负着两大使命&#xff1a;一是为华为内部各产业开发者提供软件开发工具&#xff0c;提升开发效率&#xff1b;二是以华为云为承载平台&#xff0c;将华为内部优秀的软件工程工具和研发实践服务…

优维产品最佳实践:流水线的编排

前言&#xff1a;在前面的内容中&#xff0c;我们已经深入探讨了流水线的设计思路以及“一次构建多次部署”的核心概念。现在&#xff0c;让我们将这些理论知识付诸实践&#xff0c;在 EasyOps 平台上开始编排流水线。 本期优维EasyOps产品使用最佳实践&#xff0c;我们将为您…

视频监控平台EasyCVR分组批量绑定/取消通道功能的后端代码设计逻辑介绍

视频监控平台/视频存储/视频分析平台EasyCVR基于云边端一体化管理&#xff0c;可支持视频实时监控、云端录像、云存储、磁盘阵列存储、回放与检索、智能告警、平台级联等功能。安防监控平台在线下场景中应用广泛&#xff0c;包括智慧工地、智慧工厂、智慧校园、智慧社区等等。 …

真实软件测试案例测试报告编写规划

一、什么是测试报告&#xff1f; 测试报告是指把测试的过程和结果写成文档&#xff0c;对发现的问题和缺陷进行分析&#xff0c;为纠正软件存在的质量问题提供依据&#xff0c;同时为软件验收和交付打下基础。 二、测试执行和结束的准则 1、测试执行的结束的原因 1&#xff…

正规好用的电脑端抽奖软件有哪些?

这几个软件都是本人反复用过、反复比较的&#xff0c;且都超过5年。 1. 518抽奖软件 518抽奖软件&#xff0c;518我要发&#xff0c;超好用的年会抽奖软件&#xff0c;简约设计风格。 包含文字号码抽奖、照片抽奖两种模式&#xff0c;支持姓名抽奖、号码抽奖、数字抽奖、照片抽…

珠宝行业如何进行有效的软文推广?媒介盒子告诉你

在当今时代&#xff0c;珠宝不仅是一种饰品&#xff0c;更是一种身份的象征&#xff0c;因此珠宝行业的竞争越来越激烈&#xff0c;为了让自己的品牌脱颖而出&#xff0c;珠宝企业需要进行有效的推广&#xff0c;而软文推广就是一种非常有效的方式。也有很多珠宝品牌来找盒子进…

svg 知识点总结

1. 引用 svg&#xff0c;直接用 img 标签 <img src"帐篷.svg" alt"露营">2. 画 svg 各种图形。 矩形 rect圆角矩形 rect圆圈 circle椭圆 ellipse线段 line折线 polyline多边形 polygon路径 path <svg width"200" height"250&qu…

C++初阶--类和对象(中)

目录 类的6个默认成员函数构造函数使用方法 析构函数使用方法 拷贝构造函数使用方法 赋值运算符重载赋值运算符重载 const成员 上篇末尾我们讲到了关于c实现栈相较于c语言在传递参数时的一些优化&#xff0c;但实际上&#xff0c;c在 初始化 清理 赋值 拷贝等方面也做了很大程…

照片太大怎么缩小kb?

照片太大怎么缩小kb&#xff1f;在日常使用电脑或手机时&#xff0c;我们经常会遇到照片过大而无法在聊天工具中传输的情况。这种情况非常常见且正常。当我们拍摄或保存的照片文件体积较大时&#xff0c;不仅会给传输带来困扰&#xff0c;还会占据宝贵的手机和电脑内存空间&…

Beyond Compare:文件夹和文件对比专家

在处理文件和文件夹时&#xff0c;我们有时需要比较两个文件或文件夹是否一致。在这个过程中&#xff0c;Beyond Compare 这款专业的文件夹和文件对比工具成为了我们的得力助手。下面&#xff0c;让我们一起来了解这款工具的基本使用说明。 一、Beyond Compare的下载与安装 首…

代理HTTP使用不当会出现哪些问题?如何正确使用代理服务?

代理HTTP是一种常见的网络代理方式&#xff0c;它为客户端和服务器之间提供中间层&#xff0c;转发上下游的请求和响应。正确使用代理HTTP可以提高采集效率、增加网络安全性、加速网络速度、保护用户隐私。但是&#xff0c;使用不当就难以达到预期的效果&#xff0c;在使用代理…

PYTHON 3.10中文版官方文档

大家好&#xff0c;我是涛哥。 很多问我涛哥学习Python看啥&#xff0c;一般我都会建议多看看官方文档&#xff0c;因为官方文档真的周到了&#xff0c;啥内容都有&#xff0c;比如新手安装&#xff0c;标准库&#xff0c; AIP参考手册&#xff0c;常见FAQ问题&#xff0c;太…

【jmeter+ant+jenkins】之搭建 接口自动化测试平台

平台搭建 (1). 录制jmeter脚本 (2). 将jmeter的安装目录下的G:\jmeter\apache-jmeter-5.1.1\extras中&#xff0c;将 ”ant-jmeter-1.1.1.jar”文件放到 ant的lib目录下 (3). 配置jmeter的xml配置文件&#xff0c;并放在ant目录的bin目录下&#xff0c;使用ant编译验证jmeter的…