数据挖掘的学习路径

news2025/1/11 22:52:20

⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️
🐴作者:秋无之地

🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。

🐴欢迎小伙伴们点赞👍🏻、收藏⭐️、留言💬

上一篇文章已经跟大家介绍过《数据分析综述》,相信大家对数据分析都有一个清楚的认识。下面我讲一下数据分析中比较重要的一环:数据挖掘的学习路径

一、数据挖掘的重要组成

一开始可能大家对数据挖掘还很陌生,有点无从下手的感觉。不用担心,接下来听我讲解就行。

想象一下,茫茫的大海上,孤零零地屹立着钻井,想要从大海中开采出宝贵的石油。对于普通人来说,大海是很难感知的,就更不用说找到宝藏了。但对于熟练的石油开采人员来说,大海是有坐标的。他们对地质做勘探,分析地质构造,从而发现哪些地方更可能有石油。然后用开采工具,进行深度挖掘,直到打到石油为止。

大海、地质信息、石油对开采人员来说就是数据源、地理位置、以及分析得到的结果。而我们要做的数据挖掘工作,就好像这个钻井一样,通过分析这些数据,从庞大的数据中发现规律,找到宝藏。

二、数据挖掘的基本流程

数据挖掘主要分为下面6个流程:

  1. 商业理解:数据挖掘不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求,在这个基础上,再对数据挖掘的目标进行定义。
  2. 数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。
  3. 数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。
  4. 模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。
  5. 模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。
  6. 上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。

三、数据挖掘的十大算法

在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。

1. C4.5

C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。

2. 朴素贝叶斯(Naive Bayes)

朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。

3. SVM

SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。

4. KNN

KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。

5. AdaBoost

Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。

6. CART

CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。

7. Apriori

Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。

8. K-Means

K-Means 算法是一个聚类算法。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。

9. EM

EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。EM 算法经常用于聚类和机器学习领域中。

10. PageRank

PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。

算法可以说是数据挖掘的灵魂,也是最精华的部分。看完上面的介绍,相信大家对十大算法有一个初步的了解,具体内容不理解没有关系,后面我会详细给大家进行讲解。

四、数据挖掘的数学原理

之前已经提到过,学好数据分析,数据基础是必须的。那是因为数据挖掘中的经典算法,如果不了解概率论和数理统计,是很难掌握算法的本质;如果不懂线性代数,就很难理解矩阵和向量运作在数据挖掘中的价值;如果没有最优化方法的概念,就对迭代收敛理解不深。所以说,想要更深刻地理解数据挖掘的方法,就非常有必要了解它后背的数学原理。

1. 概率论与数理统计

概率论在我们上大学的时候,基本上都学过,不过大学里老师教的内容,偏概率的多一些,统计部分讲得比较少。在数据挖掘里使用到概率论的地方就比较多了。比如条件概率、独立性的概念,以及随机变量、多维随机变量的概念。

2. 线性代数

向量和矩阵是线性代数中的重要知识点,它被广泛应用到数据挖掘中,比如我们经常会把对象抽象为矩阵的表示,一幅图像就可以抽象出来是一个矩阵,我们也经常计算特征值和特征向量,用特征向量来近似代表物体的特征。这个是大数据降维的基本思路。

3. 图论

社交网络的兴起,让图论的应用也越来越广。人与人的关系,可以用图论上的两个节点来进行连接,节点的度可以理解为一个人的朋友数。我们都听说过人脉的六度理论,在 Facebook 上被证明平均一个人与另一个人的连接,只需要 3.57 个人。当然图论对于网络结构的分析非常有效,同时图论也在关系挖掘和图像分割中有重要的作用。

4. 最优化方法

最优化方法相当于机器学习中自我学习的过程,当机器知道了目标,训练后与结果存在偏差就需要迭代调整,那么最优化就是这个调整的过程。一般来说,这个学习和迭代的过程是漫长、随机的。最优化方法的提出就是用更短的时间得到收敛,取得更好的效果

五、总结

下图是数据挖掘的知识清单,也是对本文内容的一个总结。

版权声明

本文章版权归作者所有,未经作者允许禁止任何转载、采集,作者保留一切追究的权利。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/986740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DGIOT-Modbus-RTU控制指令05、06的配置与下发

[小 迪 导 读]:伴随工业物联网在实际应用中普及,Modbus-RTU作为行业内的标准化通讯协议。在为物联网起到采集作用的同时,设备的控制也是一个密不可分的环节。 场景解析:在使用Modbus对设备进行采集后,可以通过自动控制…

nested exception is java.io.FileNotFoundException

完整的错误信息: [main] ERROR o.s.boot.SpringApplication - Application run failed org.springframework.beans.factory.BeanDefinitionStoreException: Failed to parse configuration class [com.heima.article.ArticleApplication]; nested exception is java…

Android 网络配置

adb root adb shell 改变网卡网址 ifconfig eth0 192.168.0.167 up 添加虚拟网卡 ifconfig eth0:0 192.168.10.10 up 以上的命令就可以在eth0网卡上创建一个叫eth0:0的虚拟网卡,他的地址是:192.168.10.10 删除虚拟网卡 ifconfig eth0:0 down ip route 查看路由表的内容 …

如何选择合适的HTTP代理服务器

HTTP代理服务器是一种常见的网络代理方式,它可以帮助用户隐藏自己的IP地址,保护个人隐私和安全。然而,选择合适的HTTP代理服务器并不容易,需要考虑多个因素。本文将介绍如何选择合适的HTTP代理服务器。 了解代理服务器的类型 HTT…

MySQL 8.0(winx64)安装笔记

一、背景 从MySQL 5.6到5.7,再到8.0,版本的跳跃不可谓不大。安装、配置的差别也不可谓不大,特此备忘。 二、过程 (1)获取MySQL 8.0社区版(MySQL Community Server)   从 官网 字样 “MySQL …

Docker 搭建Redis Cluster 集群

环境: centos7 redis:7.0.5 三主三从,六个节点 一、下载redis镜像 docker pull redis:7.0.5 二、创建虚拟网卡 docker network create redis-cluster# 查看创建的Docker网卡 docker network ls 网卡类型为bridge桥接类型 三、准备redis配置文件 redi…

安卓核心板的不同核心规格及架构介绍

安卓核心板是将核心功能封装的一块电子主板,集成芯片、存储器和功放器件等,并提供标准接口的芯片。 其特点: ● 能跑 Android 等操作系统 强大的功能及丰富的接口 支持 LCD/TP,Audio,Camera,Video&#…

vue3:13、Vue3.3新特性-defineModel

旧版本的语法 新版本语法

一百七十三、Flume——Flume写入HDFS后的诸多小文件问题

一、目的 在用Flume采集Kafka中的数据写入HDFS后,发现写入HDFS的不是每天一个文件,而是一个文件夹,里面有很多小文件,浪费namenode的宝贵资源 二、Flume的配置文件优化(参考了其他博文) (一&a…

谷歌收录网页最快需要多久?

答案是:谷歌收录网页最快是24小时内。 当我们建立新的网站或者为现有网站添加新内容时,都希望这些内容能够尽快被谷歌收录。 但实际上,谷歌的收录时间可能会因各种因素而异。 这篇文章将为您详解相关的知识点。 网站收录的基本过程 如何…

二、[mysql]之Explain讲解与实战

目录 一、了解Explain1.Explain介绍 二、Explain相关字段1.partitions2.filtered3.SHOW WARNINGS命令 三、Explain比较重要字段1.id2.select_type3.table4.type5.possible_keys6.key7.key_len8.ref9.rows10.Extra 四、索引优化实战(遵循原则)1.全值匹配2…

2023年7月京东奶粉行业品牌销售排行榜(京东数据产品)

鲸参谋监测的京东平台7月份奶粉市场销售数据已出炉! 根据鲸参谋平台的数据显示,今年7月份,京东奶粉市场的销量为600万,同比去年同期有所下滑,整体下降约21%;销售额为22亿,同比增长约9%。由此也…

UWB学习——day2

UWB应用 基于上文UWB学习——day1中对UWB技术的相关优势介绍,UWB技术可广泛应用于以下场景。 WPAN(无线个域网) 基于其高精度(亚厘米级)、低功耗和高穿透性等特征,在以人为基础的个域网中应用广泛&#…

使用自动模型

本文通过文本分类任务演示了HuggingFace自动模型使用方法,既不需要手动计算loss,也不需要手动定义下游任务模型,通过阅读自动模型实现源码,提高NLP建模能力。 一.任务和数据集介绍 1.任务介绍 前面章节通过手动方式定义下游任务模…

2020年12月 C/C++(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:数组指定部分逆序重放 将一个数组中的前k项按逆序重新存放。例如,将数组8,6,5,4,1前3项逆序重放得到5,6,8,4,1。 时间限制:1000 内存限制:65536 输入 输入为两行: 第一行两个整数,以空格分隔,分别为数组元素的个数n(1 < n…

Mybatis传参parameterType为List<Map>

这里分别记录使用过的五种传参方式&#xff1a; 1、在入参只有一个的情况下,Mapper.java中直接传即可 2、而在参数有两三个的情况下,Mapper.java中可以用Param注解来指定入参 程序就知道哪个参对应拼接完SQL的哪个条件字段 并且Mapper.xml中parameterType不用去指定&#xff…

controller接口上带@PreAuthorize的注解如何访问 (postman请求示例)

1. 访问接口 /*** 查询时段列表*/RateLimiter(time 10,count 10)ApiOperation("查询时段列表")PreAuthorize("ss.hasPermi(ls/sy:time:list)")GetMapping("/list")public TableDataInfo list(LsTime lsTime){startPage();List<LsTime> l…

【 Tkinter界面-练习04】 画板作画详细揭示

一、说明 对画布的掌握分三个部分&#xff0c;将图形paint到画布、动画move、鼠标画&#xff1b;本篇将侧重于鼠标画的功能&#xff0c;提起鼠标画实现&#xff0c;将涉及一系列组合操作才能完成&#xff0c;这里将一一加以介绍。 Canvas 小部件具有大量功能&#xff0c;我们不…

这是公司最糟糕的程序员,但是我坚决要留住他!

我在一家著名的软件咨询公司工作&#xff0c;有一天&#xff0c;公司决定对开发人员的个人绩效进行度量。 这个目标很美好&#xff1a;评估个人能力&#xff0c;帮助开发人员成长。 指标经过层层分解&#xff0c;来到我们团队&#xff0c;经过经理的认真讨论&#xff0c;决定不…

云备份客户端——数据管理模块

数据管理模块设计之前&#xff0c;我们需要先明确该模块的信息是用来做什么的。根据上文分析该模块信息主要用于判断一个文件是否需要备份&#xff0c;判断条件有两个&#xff1a;1.新增文件 2.被修改过的文件 新增文件好判断&#xff0c;由于我们获得新文件后是先上传文件&…