Xilinx IDDR与ODDR原语的使用

news2024/12/1 0:45:19

文章目录

  • ODDR原语
    • 1. OPPOSITE_EDGE 模式
    • 2. SAME_EDGE 模式


ODDR原语

在这里插入图片描述

例化模板:

ODDR #(
      .DDR_CLK_EDGE("OPPOSITE_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE" 
      .INIT(1'b0),    // Initial value of Q: 1'b0 or 1'b1
      .SRTYPE("SYNC") // Set/Reset type: "SYNC" or "ASYNC" 
   ) ODDR_inst (
      .Q(Q),   // 1-bit DDR output
      .C(C),   // 1-bit clock input
      .CE(CE), // 1-bit clock enable input
      .D1(D1), // 1-bit data input (positive edge)
      .D2(D2), // 1-bit data input (negative edge)
      .R(R),   // 1-bit reset
      .S(S)    // 1-bit set
   );

1
这里的 D1 和 D2 是数据的两个输入端口,输出端口会在上升沿这里需要注意的是 set和 reset 同时只能有一个被置高,也因此,描述端口时,使用的 S/R。除了这些端口外,ODDR原语还包含一些可用属性,
2
这里简单描述下 ODDR 的两种操作模式:

1. OPPOSITE_EDGE 模式

在该模式中,时钟的两个边沿被用来以两倍的吞吐量从 FPGA 逻辑中捕获数据。这种结构与 virtex-6 的实现比较相似。两个输出都提供给 IOB 的数据输入或者三态控制输入。使用OPPOSITE_EDGE 模式的输出 DDR 时序图如图 46-4 所示:
3
在该模式下,输入数据在两个边沿被采样,可以看到输出端 OQ 上首先输出的是 D1A,随后再输出 D2A。

该模式下,上升沿读取D1数据,并在时钟周期的前半个周期输出,下降沿读取D2数据,并在时钟周期的后半个周期输出。

2. SAME_EDGE 模式

在该模式下,数据可以在相同的时钟边沿送给 IOB。相同的时钟沿将数据送给 IOB 可以避免建立时间违规,并允许用户使用最小的寄存器来执行更高的 DDR 频率来进行寄存器的延迟,而不是使用 CLB 寄存器。图 46-5 显示了使用 SAME_EDGE 模式的输出 DDR 的时序图:
1
可以看到,在该模式下,输出端 OQ 同样也是先输出 D1 端采集到的值,再输出 D2 端采集到的值。

该模式下,时钟周期的上升沿同时读取D1,D2数据,并在前半个时钟周期输出D1,后半个时钟周期输出D2。

用法举例说明:
一般我们使用GMII在一个时钟周期内有8bit数据发送,当我们使用RGMII时需要发送4bit数据,此时我们可以用ODDR进行传输,使用4个ODDR例化。

genvar i;
generate 
	for (i = 0;i < 4;i= i+1)
	begin :  ODDR_rgmii_txd	
		
	   ODDR #(
		  .DDR_CLK_EDGE("OPPOSITE_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE" 
		  .INIT(1'b0    ),            // Initial value of Q: 1'b0 or 1'b1
		  .SRTYPE("SYNC")             // Set/Reset type: "SYNC" or "ASYNC" 
	   ) ODDR_rgmii_txd (
		  .Q(rgmii_txd[i]  ),    // 1-bit DDR output
		  .C(gmii_tx_clk   ),    // 1-bit clock input
		  .CE(1'b1         ),    // 1-bit clock enable input
		  .D1(gmii_txd[i]  ),    // 1-bit data input (positive edge)
		  .D2(gmii_txd[i+4]),    // 1-bit data input (negative edge)
		  .R(~reset_n      ),    // 1-bit reset
		  .S(1'b0          )     // 1-bit set   与R不能同时为1
	   );
    end
endgenerate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/986451.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Scrapy的基本介绍、安装及工作流程

一.Scrapy介绍 Scrapy是什么&#xff1f; Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架(异步爬虫框架) 通常我们可以很简单的通过 Scrapy 框架实现一个爬虫&#xff0c;抓取指定网站的内容或图片。 Scrapy使用了Twisted异步网络框架&…

【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补)

本文章代码以c为例&#xff01; 一、力扣第1049题&#xff1a;最后一块石头的重量 II 题目&#xff1a; 有一堆石头&#xff0c;用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。 每一回合&#xff0c;从中选出任意两块石头&#xff0c;然后将它们一起粉碎…

C++学习记录——삼십삽 STL空间配置器

文章目录 1、概念2、使用3、容器上的体现 1、概念 我们先看malloc&#xff0c;malloc是创建在堆上的&#xff0c;虽然malloc可以申请内存&#xff0c;但也有限制&#xff0c;windows下用VirtualAlloc可以直接向堆申请内存&#xff0c;Linux中则是brk&#xff0c;不过这两个效率…

HCIA自学笔记01-传输介质

通信网络除了包含通信设备本身之外&#xff0c;还包含连接这些设备的传输介质&#xff0c;如同轴电缆、双绞线和光纤等。不同的传输介质具有不同的特性&#xff0c;这些特性直接影响到通信的诸多方面&#xff0c;如线路编码方式、传输速度和传输距离等。 简单网络&#xff1a;…

✔ ★算法基础笔记(Acwing)(一)—— 基础算法(20道题)【java版本】

基础算法 一、快速排序1. 快速排序例题2. 第k个数( 快速选择 ) ✔ ✔1.31★快排二刷总结( 4点 ) 二、归并排序1. 归并排序模板题 ✔ ✔1.31★二刷总结 ★2. 逆序对的数量 ✔ ✔1.31★二刷总结 三、二分1. 数的范围 ✔1.31★二刷总结(mid > x 则是 输出最左边一个)第一个大于…

【操作系统】聊聊Linux内存工作机制

内存主要是用来存储系统和应用程序的指令、数据、缓存等 内存映射 内存是需要安全机制保护的&#xff0c;所以只有内核才可以直接访问物理内存。进程如果要访问内存需要通过独立的虚拟地址空间。 虚拟地址空间其实包含两部分。一部分是内核空间&#xff0c;另一部分就是用户…

搭建RabbitMQ消息服务,整合SpringBoot实现收发消息

作者主页&#xff1a;Designer 小郑 作者简介&#xff1a;3年JAVA全栈开发经验&#xff0c;专注JAVA技术、系统定制、远程指导&#xff0c;致力于企业数字化转型&#xff0c;CSDN博客专家&#xff0c;蓝桥云课认证讲师。 目录 一、前言1.1 什么是消息队列1.2 RabbitMQ 是什么1.…

【AI】机器学习——线性模型(线性回归)

线性模型既能体现出重要的基本思想&#xff0c;又能构造出功能更加强大的非线性模型 文章目录 3.1 线性模型3.1.1 数据3.1.2 目标/应用 3.2 线性回归3.2.1 回归模型历史3.2.2 回归分析研究内容回归分析步骤 3.2.3 回归分析分类3.2.4 回归模型3.2.5 损失函数梯度下降法一元回归模…

【数据仓库基础(二)】数据仓库架构

文章目录 一. 基本架构二. 主要数据仓库架构1. 数据集市架构1.1. 独立数据集市1.2. 从属数据集市1.3. Inmon企业信息工厂架构 2. Kimball数据仓库架构3. 混合型数据仓库架构 三. 操作数据存储&#xff08;ODS&#xff09; 一. 基本架构 架构是指系统的一个或多个结构。结构中包…

stride与padding对输出尺寸的计算

公式&#xff1a; 练习&#xff1a; 图1&#xff1a; input4&#xff0c;filter3&#xff0c;padding0&#xff0c;stride1 output2 图2&#xff1a; input5&#xff0c;filter3&#xff0c;padding0&#xff0c;stride2 output2 图3&#xff1a; input6&#xff0c;filter3&am…

设计模式之观察者模式、访问者模式与模板方法模式

目录 观察者模式 简介 优缺点 结构 实现 运用场景 访问者模式 简介 优缺点 结构 实现 运用场景 模板方法模式 简介 优缺点 结构 实现 运用场景 观察者模式 简介 又叫发布-订阅模式&#xff0c;定义对象间一种一对多的依赖关系&#xff0c;使得每当一个对象改…

Android 应用程序通过MediaPipe 图片识别

MediaPipe 中使用目标检测模型可以实现实时检测图像或视频中的物体&#xff0c;并标记出物体的位置和类别。MediaPipe 中的目标检测模型基于机器学习算法&#xff0c;经过训练以识别特定的物体类别&#xff1b; 以下是在 Android 应用程序中集成 MediaPipe Object Detection 的…

SpringMVC应用

文章目录 一、常用注解二、参数传递2.1 基础类型String2.2 复杂类型2.3 RequestParam2.4.路径传参 PathVariable2.4 Json数据传参 RequestBody2.5 RequestHeader 三、方法返回值3.1 void3.2 Stringmodel3.3 ModelAndView 一、常用注解 SpringMVC是一个基于Java的Web框架&#…

Nacos启动连接mysql报错

问题 Nacos启动后&#xff0c;访问http://localhost:8848/nacos/index.html一直访问不了&#xff0c;查看nacos安装目录下的logs/config-fatal.log日志文件发现连接mysql报错&#xff0c;但是通过客户端连接工具测试mysql连接正常&#xff1b;核心报错如下&#xff1a; Cause…

【线程池】面试被问到线程池参数如何配置时该如何回答

前言 没有基于业务场景&#xff0c;直接抛出这个问题&#xff0c;等同于耍流氓。 八股文告诉我们CPU密集型就核心数1&#xff0c;IO密集型就核心数*2&#xff0c;那么真实业务中该怎么去配置呢。 方法论还是有的 1.需要分析线程池执行的任务的特性&#xff1a; CPU 密集型还是 …

【操作】安防监控/视频汇聚/视频云存储EasyCVR平台AI智能分析网关V3接入教程2.0

TSINGSEE的边缘计算硬件智能分析网关V3内置多种AI算法模型&#xff0c;包括人脸、人体、车辆、车牌、行为分析、烟火、入侵、聚集、安全帽、反光衣等等&#xff0c;可应用在安全生产、通用园区、智慧食安、智慧城管、智慧煤矿等场景中。将网关硬件结合TSINGSEE青犀的视频汇聚/安…

数据结构-01 数据结构基本概念,算法时间复杂度,空间复杂度

0 数据结构概述 四门课的关系 1 绪论 数据对象、数据元素、数据项关系 1.1 数据结构的基本概念 1.2 算法和算法评价 小练习 空间复杂度中的递归调用 n只是传入 n也是数组&#xff0c;计算存储数组flag的空间大小

HTTPS协议和SOCKS5协议的区别

HTTPS协议和SOCKS5协议是两种不同的网络协议&#xff0c;它们在传输数据的方式、安全性和使用场景等方面都有所不同。下面将介绍HTTPS协议与SOCKS5协议的区别。 传输数据的方式 HTTPS协议是一种基于HTTP协议的安全协议&#xff0c;它使用SSL/TLS协议对数据进行加密和解密。在传…

Kafka3.0.0版本——消费者(独立消费者消费某一个主题数据案例__订阅主题)

目录 一、独立消费者消费某一个主题数据案例1.1、案例需求1.2、案例代码1.3、测试 一、独立消费者消费某一个主题数据案例 1.1、案例需求 创建一个独立消费者&#xff0c;消费firstTopic主题中数据&#xff0c;所下图所示&#xff1a; 注意&#xff1a;在消费者 API 代码中必…

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测(风电功率预测)

时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测&#xff08;风电功率预测&#xff09; 目录 时序预测 | MATLAB实现CNN-LSTM卷积长短期记忆神经网络时间序列预测&#xff08;风电功率预测&#xff09;预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1…