经典神经网络介绍-面试必备(持续更新...

news2024/11/15 15:40:52

一、RCNN系列

1、RCNN

RCNN是用于目标检测的经典方法,其核心思想是将目标检测任务分解为两个主要步骤:候选区域生成和目标分类。

  • 候选区域生成:RCNN的第一步是生成可能包含目标的候选区域,RCNN使用传统的计算机视觉技术,特别是选择性搜索(Selective Search)算法,这是一种Region Proposal区域提议方法,它根据图像中的纹理、颜色和形状等信息来生成潜在的候选区域。选择性搜索生成的候选区域通常数千个,因此需要对这些区域进行裁剪和调整,以使它们具有相同的大小和纵横比。
  • 特征提取:对于每个候选区域,RCNN使用深度卷积神经网络(通常是在ImageNet数据集上预训练的AlexNet)来提取特征。这些特征用于表示每个候选区域的内容。RCNN通过将每个候选区域的图像块调整为固定大小,然后通过卷积神经网络进行前向传播,得到一个固定维度的特征向量。
  • 目标分类:对于每个候选区域,RCNN将提取的特征向量输入到一个支持向量机(SVM)分类器中共,以确定该区域是否包含感兴趣的目标物体。RCNN还对每个目标物体的类别进行分类,使用不同的SVM分类器来表示不同的类别。每个分类器被训练为将包含目标物体的候选区域与不包含目标物体的区域进行区分。
  • 边界框回归:为了提高目标的位置精度,RCNN还使用了一个回归器来微调每个候选区域的边界框,这个回归器被训练为预测候选区域与实际目标边界框之间的差异。
  • 训练:RCNN的训练分为两个阶段,预训练和微调。①预训练阶段,卷积神经网络(Alexnet)在大规模图像分类任务上进行与训练,以获得有用的特征提取器。②微调阶段,使用标注的目标检测数据对整个RCNN模型进行微调,包括SVM分类器和边界框回归器。
  • 优点和缺点:①优点:RCNN在目标检测上取得了很好的性能,特别是在大规模目标检测数据集上。它能够处理不同大小和形状的目标,并且可以适应多类别目标检测。②缺点:RCNN是一个复杂的多阶段模型,难以实现端到端的训练,后续版本(如Fast R-CNN和Faster R-CNN)针对这些缺点进行了改进,提高了速度和性能。

2、Fast R-CNN(Fast Region-based Convolutional Neural Network)

Fast R-CNN是在RCNN和Selective Search基础上提出的改进方法,主要创新是将整个目标检测流程集成到一个卷积神经网络(CNN)种,从而显著提高了速度和性能。

  • 候选区域生成:不同于RCNN中使用选择性搜索,FastRCNN使用卷积网络直接从输入图像中生成候选区域。使用一个称为Region Proposal Network(RPN)的子网络,RPN可以高效地生成多尺度和多形状地候选区域,这些区域被称为锚框(Anchor Boxes)。
  • 特征提取:FastRCNN使用卷积神经网络来提取每个候选区域的特征。这些区域特征被送入网络中以进行目标分类和边界框回归。使用卷积层和ROI(Region of Interest)池化层来提取固定维度的特征向量
  • 目标分类和边界框回归:对于每个候选区域,Fast R-CNN使用两个并行的全连接层,一个用于目标分类(哪个类别?)和用于边界框回归(目标位置)。分类层使用softmax来预测目标的类别概率,而回归层用于微调候选区域的边界框。
  • 训练:Fast R-CNN进行端到端的训练,可以同时优化RPN、目标分类和边界框回归的损失函数。训练数据包括正样本(包含目标的锚框)、负样本(不包含目标的锚框)以及他们的标签。

3、Faster R-CNN(Faster Region-based Convolutional Neural Network)

Faster R-CNN 进一步改进了 Fast R-CNN,将目标检测模型的速度提高到了一个新的水平,同时保持了很高的准确性。

  • 候选区域生成:Faster R-CNN引入了一个完全卷积网络,作为RPN,用来生成候选区域。RPN是一个端到端可训练的网络,可以生成候选区域。
  • 特征提取:与Fast-RCNN类似,Faster R-CNN 使用卷积神经网络来提取候选区域的特征。
  • 目标分类和边界框回归:Faster R-CNN 与 Fast R-CNN 具有相似的目标分类和边界框回归步骤。
  • 训练:Faster R-CNN 通过联合训练 RPN 和检测网络(包括目标分类和边界框回归)来优化整个系统。整个模型可以一次性生成候选区域并执行目标检测,从而提高了速度。

二、yolo系列

计算机视觉领域,目标检测是一个十分重要的研究主题, 广泛应用在人脸识别、车牌识别、安防、智慧交通、自动驾驶等领域。主要经典算法有:YOLO

1、YOLOv1

以往的二阶段检测算法,如Faster-RCNN,在检测时需要经过两步:边框回归和softmax分类。由于大量预选框的生成,该方法检测精度较高,但实时性较差。YOLO之父Joseph Redmon提出了通过直接回归的方式获取目标检测的具体位置信息和类别分类信息。极大的降低了计算量,显著提升了检测的速度。达到了45FPS(Fast YOLO版本达到了155FPS)。

  • 思路:①将输入图片缩放至448x448x3大小;②经过卷积网络backbone提取特征图;③把提取到的特征图送入两层全连接层,最终输出7x7x30大小的特征图。更进一步讲,就是将输入的图片整体划分为SxS的网格(例如7x7),物体中心落在哪一个格子中,那么该各自就负责该物体的检测,每一个格子预测B个边框,输出SxS(B*5+C)。对于YOLOv1而言,常用的是7x7的网格划分,预测2个边框,输出7x7x30,30个通道包含每个类别的概率+边框置信度+边框位置信息。

  • 网络结构:骨干网络是GoogleNet网络,24个卷积层+2个全连接层。使用7x7卷积。
  • 优势与不足:①优点:与二阶段检测算法相比,利用直接回归的方式,大大缩小了计算量,提升了运行速度。②不足:每一个网格仅有两个预测框,当存在多物体密集挨着或者小目标的时候,检测效果不好。

2、YOLOv2

与YOLOv1相比,v2做了三点改变①更换骨干网络;②引入PassThrough;③借鉴了二阶段检测的思想,添加了预选框。

  • 思路:将图片输入到darknet19网络中提取特征图,然后输出目标框类别信息和位置信息。
  • 网络结构:骨干网络为darknet19,如下图所示针对1000类别的分类任务,只不过对于检测任务而言,需要使用3x3卷积(输出通道1024)取代上表中最后的卷积层,再添加Passthrough操作后,进行输出。已不再使用7x7这样的大卷积核:

  •  技巧1: PassThrough操作(明天继续....今天累了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/985660.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Apollo学习笔记】——规划模块TASK之PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER(一)

文章目录 TASK系列解析文章前言PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER功能介绍PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER相关配置PIECEWISE_JERK_NONLINEAR_SPEED_OPTIMIZER流程确定优化变量定义目标函数定义约束ProcessSetUpStatesAndBoundsOptimizeByQPCheckSpeedLimitF…

六种线程状态转换大汇总

五种线程状态 or 六种线程状态 五种状态这是从 操作系统 层面来描述的 六种状态这是从 Java API 层面来描述的 六种线程状态转换 假设有线程 Thread t 情况 1 NEW --> RUNNABLE 当调用 t.start() 方法时&#xff0c;由 NEW --> RUNNABLE 情况 2 RUNNABLE <-->…

达梦数据库-锁表

查询锁表语句 select * from v$sessions where trx_id in (select trx_id from V$LOCK) and user_name 用户名称 order by create_time desc;关闭会话 sp_close_session(上面语句查询到的sess_id);

【LangChain系列 4】Model I/O——Prompts概述

原文地址&#xff1a;【LangChain系列 4】Model I/O——Prompts概述 本文速读&#xff1a; Prompt模版 样本选择器 Prompts简单来讲就是一组指令或文本输入&#xff0c;语言模型理解它的意思后&#xff0c;给出一个输出响应。 LangChain提供了一些模块可以让我们更方便地使…

【机器视觉】揭秘机器视觉在锂电池生产中的应用

随着环保意识的日益增强和新能源汽车市场的快速发展&#xff0c;新能源锂电池的需求量也在不断攀升。而在锂电池生产的全过程中&#xff0c;机器视觉技术正发挥着越来越重要的作用。那么&#xff0c;机器视觉到底能在哪些环节大显身手呢?本文将带您揭秘机器视觉在锂电池生产中…

2023 年全国大学生数学建模D题目-圈养湖羊的空间利用率

D题目应该是专科题目&#xff1f;&#xff1f;&#xff1f;不确定了 感觉类似一个细胞分裂问题一样&#xff0c;1&#xff0c;2&#xff0c;4&#xff0c;8&#xff0c; 题目1中规中矩 按照前面说的分配方法&#xff0c;一步一步计算进行 缺口的问题考虑反推回去&#xff0c…

最强的AI视频去码图片修复模型:CodeFormer

目录 1 CodeFormer介绍 1.1 CodeFormer解决的问题 1.2 人脸复原的挑战 1.3 方法动机 1.4 模型实现 1.5 实验结果 2 CodeFormer部署与运行 2.1 conda环境安装 2.2 运行环境构建 2.3 模型下载 2.4 运行 2.4.1 人脸复原 ​编辑​编辑 2.4.2 全图片增强 2.4.3 人脸颜色…

小程序 target 与 currentTarget(详细)

小程序中关于事件对象 e 的属性中有两个特别重要的属性:target与currentTarget属性:对于这两个属性,官方文档上的解释是: target:事件源组件对象currentTarget:当前组件对象由于官方解释太过精炼,下面仔细讲讲其中的含义,先看一段代码: <view id="outter&quo…

自动提词器有哪些?这几款收藏好

自动提词器有哪些&#xff1f;自动提词器是一种非常实用的工具&#xff0c;无论是在翻译还是整理工作中&#xff0c;都可以帮助我们快速、准确地完成各种繁琐的任务。市面上有很多种自动提词器的应用&#xff0c;那么今天就来给大家介绍几款好用的自动提词工具。 【书单视频助手…

nowcoder NC10 大数乘法

题目链接&#xff1a; https://www.nowcoder.com/practice/c4c488d4d40d4c4e9824c3650f7d5571?tpId196&tqId37177&rp1&ru/exam/company&qru/exam/company&sourceUrl%2Fexam%2Fcompany&difficultyundefined&judgeStatusundefined&tags&tit…

解决VSCode下载速度特别慢的问题

一、下载VSCode 1.打开VSCode官网 https://code.visualstudio.com 2.download下载 3.下载特别慢 二、解决VSCode下载速度特别慢 1.单击右下角全部显示 我是用chrome浏览器&#xff0c;点击右下角的全部显示按钮&#xff0c;可以跳转到下载内容页面。 如果你是用其他浏览器…

OpenCV(二十八):连通域分割

目录 1.介绍连通域分割 2.像素领域介绍 3.两遍法分割连通域 4.连通域分割函数 1.介绍连通域分割 连通域分割是一种图像处理技术&#xff0c;用于将图像中的相邻像素组成的区域划分为不同的连通域。这些像素具有相似的特性&#xff0c;如相近的灰度值或颜色。连通域分割可以…

(十一)人工智能应用--深度学习原理与实战--实现泰坦尼克号生存者预测案例Titanic Survival

泰坦尼克号生存者预测(Titanic Survival)是谷歌Kaggle人工智能大赛中的经典亲例。本任务要求根据给定的1300余位乘客的特征(姓名、性别、年龄、舱位等】及幸存情况(0-死亡,1-幸存】建立神经网络模型,能够较巿准确地预测测试集中乘客的幸存情况。 主要流程为: 数据的导人及预…

Json“牵手”当当网商品详情数据方法,当当商品详情API接口,当当API申请指南

当当网是知名的综合性网上购物商城&#xff0c;由国内著名出版机构科文公司、美国老虎基金、美国IDG集团、卢森堡剑桥集团、亚洲创业投资基金&#xff08;原名软银中国创业基金&#xff09;共同投资成立1。 当当网从1999年11月正式开通&#xff0c;已从早期的网上卖书拓展到网…

python批量下载csdn文章

声明&#xff1a;该爬虫只可用于提高自己学习、工作效率&#xff0c;请勿用于非法用途&#xff0c;否则后果自负 功能概述&#xff1a; 根据待爬文章url(文章id)批量保存文章到本地&#xff1b;支持将文中图片下载到本地指定文件夹&#xff1b;多线程爬取&#xff1b; 1.爬取…

I.MX RT1176笔记(9)-- 程序异常追踪(CmBacktrace 和 segger rtt)

前言 在使用 ARM Cortex-M 系列 MCU时候&#xff0c;有时候会遇到各种异常&#xff08;Hard Fault, Memory Management Fault, Bus Fault, Usage Fault, Debug Fault&#xff09;&#xff0c;这时候我们根据经验查询PC指针&#xff0c;LR寄存器&#xff0c;堆栈数据定位地址然…

深入理解联邦学习——纵向联邦学习

分类目录&#xff1a;《深入理解联邦学习》总目录 假设进行联邦学习的数据提供方为 A A A和 B B B&#xff0c;第三方为 C C C&#xff0c;则纵向联邦学习步骤如下&#xff1a; 在系统级做加密样本对齐&#xff0c;在企业感知层面不会暴露非交叉用户对齐样本进行模型加密训练&…

day2_C++

day2_C 代码题思维导图 代码题 #include using namespace std;#define MAX 50struct StuData {private:int scoreArr[MAX];int num;public:void setNum(int num);void input();void sort();void show();int getnum();};void StuData::setNum(int num){this->num num; }vo…

c语言实训心得3篇集合

c语言实训心得体会一&#xff1a; 在这个星期里&#xff0c;我们专业的学生在专业老师的带领下进行了c语言程序实践学习。在这之前&#xff0c;我们已经对c语言这门课程学习了一个学期&#xff0c;对其有了一定的了解&#xff0c;但是也仅仅是停留在了解的范围&#xff0c;对里…

[杂谈]-快速了解直接内存访问 (DMA)

快速了解直接内存访问 (DMA) 文章目录 快速了解直接内存访问 (DMA)1、使用 DMA 需要什么&#xff1f;2、DMA介绍3、DMA 中的数据传输如何进行&#xff1f;4、DMA接口5、DMAC 控制器寄存器6、DMA 控制器编程模式6.1 突发模式&#xff08;Burst Mode&#xff09;6.2 循环窃取模式…