ARM编程模型-寄存器组

news2025/3/9 22:19:17

Cortex A系列ARM处理器共有40个32位寄存器,其中33个为通用寄存器,7个为状态寄存器。usr模式和sys模式共用同一组寄存器。
在这里插入图片描述
通用寄存器包括R0~R15,可以分为3类:

  1. 未分组寄存器R0~R7
  2. 分组寄存器R8~R14、R13(SP) 、R14(LR)
  3. 程序计数器PC(R15)、R8_fiq-R12_fir为快中断独有
    在这里插入图片描述
    在这里插入图片描述
    在不同模式下,名称相同的寄存器,实际物理上是不同的寄存器,虽然逻辑上有可能相同。
    r0~r7 所有模式下都是相同的寄存器

1.ARM的寄存器组(Thumb state)

在这里插入图片描述

2. 不同状态下的寄存器组对比

在这里插入图片描述

3.通用寄存器

通用寄存器包括R0~R15,可以分为3类:

  1. 未分组寄存器R0~R7
  2. 分组寄存器R8~R14、R13(SP) 、R14(LR)
  3. 程序计数器PC(R15)、R8_fiq-R12_fir为快中断独有

R0-R7:无影子寄存器,未分组寄存器
所有模式下,R0-R7所对应的物理寄存器都是相同的。
真正意义上的通用寄存器,ARM体系结构种对他们没有任何特殊的假设,它们的功能都是等同的。
在所有运行模式下,未分组寄存器都指向同一个物理寄存器,它们未被系统用作特殊的用途.因此在中断或异常处理进行运行模式转换时,由于不同的处理器运行模式均使用相同的物理寄存器,所以可能造成寄存器中数据的破坏。
因此,在中断或者异常处理程序中一般都需要对这几个寄存器进行保存。压栈保存。

R8-R14:有影子寄存器,分组寄存器
影子寄存器是指该寄存器在不同模式下对应的物理寄存器。
对于分组寄存器,它们每一次所访问的物理寄存器都与当前处理器的运行模式有关。
访问的物理寄存器取决于当前的处理器模式,或使用规定的名字来访问。
R8-R12各有2个物理寄存器:FIQ模式和非FIQ模式。除了FIQ模式下不用保存R8-R12,其他模式都需要保护。每个寄存器对应2个不同的物理寄存器,当使用FIQ(快速中断模式)时,访问寄存器 R8_fiq ~ R12_fiq;当使用除FIQ模式以外的其他模式时,访问寄存器R8_usr~R12_usr。。

R13-R14
各有6个物理寄存器,用户模式和系统模式共用,其他5个用于各异常模式。
对于R13,R14来说,每个寄存器对应7个不同的物理寄存器,其中一个是用户模式与系统模式共用,另外6个物理寄存器对应其他6种不同的运行模式,并采用以下记号来区分不同的物理寄存器:
R13_mode R14_mode
其中mode可为:「usr,fiq,irq,svc,abt,und,mon」。

R13(SP)被用作栈指针
通常在系统初始化时需要对所有模式下的SP指针赋值,CPU会自动切换成相应模式下的值。
在ARM指令中常用作「堆栈指针」,用户也可使用其他的寄存器作为堆栈指针,而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
寄存器R13在ARM指令中常用作堆栈指针,但这只是一种习惯用法,用户也可使用其他的寄存器作为堆栈指针。而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
由于处理器的每种运行模式均有自己独立的物理寄存器R13,在用户应用程序的初始化部分,一般都要初始化每种模式下的R13,使其指向该运行模式的栈空间。这样,当程序的运行进入异常模式时,可以将需要保护的寄存器放入R13所指向的堆栈,而当程序从异常模式返回时,则从对应的堆栈中恢复,采用这种方式可以保证异常发生后程序的正常执行。

R14(LR)链接寄存器(Link Register)
用于保存子程序返回地址或异常返回地址。
当执行子程序调用指令(BL)时,R14可得到R15(程序计数器PC)的备份。
在每一种运行模式下,都可用R14保存子程序的返回地址,当用BL或BLX指令调用子程序时,将PC的当前值复制给R14,执行完子程序后,又将R14的值复制回PC,即可完成子程序的调用返回。以上的描述可用指令完成。
从子程序返回:
MOV PC, LR
或者
BX LR

在子程序入口处使用以下指令将R14存入堆栈:
STMFD SP!,{,LR}

对应的,使用以下指令可以完成子程序返回:
LDMFD SP!,{,PC}

R15(PC):程序计数器
可以被读写
ARM STATE:bits[1:0]为0,bits[31:2]即为PC有效值
THUMB state: bits[0]为0, bits[31:1]即为PC有效值
比如如果pc的值是0x40008001,那么在寻址的时候其实会查找地址0x40008000,低2位会自动忽略掉
由于ARM体系结构采用了多级流水线技术,对于ARM指令集而言,PC总是指向当前指令的下两条指令的地址,即PC的值为当前指令的地址值加8个字节。
即:PC值=当前程序执行位置+8

4. 程序状态寄存器(v4T)CPSR、SPSR

包括所有的CPSR和SPSR寄存器,其中CPSR(当前状态寄存器)在所有模式下都是可以读写的。SPSR是CPSR的备份。二者格式相同。
「CPSR」(Current Program Status Register,当前程序状态寄存器),CPSR可在任何运行模式下被访问,它包括条件标志位、中断禁止位、当前处理器模式标志位,以及其他一些相关的控制和状态位。
每一种运行模式下又都有一个专用的物理状态寄存器,称为「SPSR」(Saved Program Status Register,备份的程序状态寄存器),当异常发生时,SPSR用于保存CPSR的当前值,从异常退出时则可由SPSR来恢复CPSR。
由于用户模式和系统模式不属于异常模式,它们没有SPSR,当在这两种模式下访问SPSR,结果是未知的。
条件标准,中断使能标志,当前处理器的模式,其它的一些状态和控制标志
在这里插入图片描述
a. 条件码标志(condition code flags)「N,Z,C,V」均为条件码标志位,它们的内容可被算术或逻辑运算的结果所改变,并且可以决定某条指令是否被执行。在ARM状态下,绝大多数的指令都是有条件执行的,在Thumb状态下,仅有分支指令是有条件执行的。
「N (Number)」: 当用两个补码表示的带符号数进行运算时,N=1表示运行结果为负,N=0表示运行结果为正或零
「Z :(Zero)」: Z=1表示运算结果为零,Z=0表示运行结果非零
「C」 : 可以有4种方法设置C的值:
o (Come)加法运算(包括CMP):当运算结果产生了进位时C=1,否则C=0
o 减法运算(包括CMP):当运算产生了借位,C=0否则C=1
o 对于包含移位操作的非加/减运算指令 ,C为移出值的最后一位
o 对于其他的非加/减运算指令C的值通常不改变
「V」 :
(oVerflow)对于加/减法运算指令,当操作数和运算结果为二进制的补码表示的带符号位溢出时,V=1表示符号位溢出;对于其他的非加/减运算指令V的值通常不改变
「Q」:在ARM V5及以上版本的E系列处理器中,用Q标志位指示增强的DSP运算指令是否发生了溢出。在其它版本的处理器中,Q标志位无定义
「J:」
仅ARM v5TE-J架构支持 , T=0;J = 1 处理器处于Jazelle状态,也可以和其他位组合.
「E位:」大小端控制位
「A位:」A=1 禁止不精确的数据异常
「T :」T = 0;J=0; 处理器处于 ARM 状态 T = 1;J=0 处理器处于 Thumb 状态 T = 1;J=1 处理器处于 ThumbEE 状态

b. 控制位 CPSR的低8位(包括I,F,T和M[4:0])称为控制位,当发生异常时这些位可以被改变,如果处理器运行特权模式,这些位也可以由程序修改。
「中断禁止位I,F」【重要】 I=1 禁止IRQ中断 F=1 禁止FIQ中断
比如我们要想在程序中实现禁止中断,那么就需要将CPSR[7]置1。

c.模式控制位的值和相关寄存器列表
在这里插入图片描述
注意观察这5个bit的特点,最高位都是1,低4位的值则各不相同,这个很重要,要想搞清楚uboot、linux的源码,尤其是异常操作的代码,必须要知道这几个bit的值。

程序状态寄存器(v5及v6新增标志位)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/965199.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VITIS编译启动文件

source /home/wj/xilinx/PetaLinux/2021.1/tool/settings.sh source /home/wj/xilinx/Vitis/2021.1/settings64.sh source /home/wj/xilinx/Vivado/2021.1/settings64.sh 0 层 eng/home/wj/ETHERCAT_DW/meta-adi/meta-adi-core 1 层 /home/wj/ETHERCAT_DW/meta-adi/meta-ad…

【算法竞赛宝典】插入排序

【算法竞赛宝典】插入排序 题目描述伪代码代码展示代码讲解 题目描述 伪代码 代码展示 //插入排序数,请自己根据例程修改 #include <iostream>using namespace std;int main() {int a[11] {1, 4, 6, 9, 13, 16, 19, 28, 40, 100};int temp1, temp2, number, end, i, j…

go学习part20(3)反射细节

1.Set函数的细节 错误示范 正确示范:传指针再调用Elem() 2.反射的高级用法 1&#xff09;方法调用&#xff08;传参和返回值都是Value&#xff09; 方法顺序i是按照方法名字的顺序来计算&#xff0c;比较ascii码 2)结构体字段数 3)value.Field&#xff08;i&#xff09;获取…

MPI之虚拟进程拓扑

什么是虚拟进程拓扑 在很多并行应用进程中&#xff0c;进程的线性排列不能充分的反映进程间在逻辑上的通信模型&#xff0c;通常由问题几何和所用的算法决定&#xff0c;进程经常被排列成二维或者三维网络形式的拓扑模型而通常用一个图来描述逻辑进程排列&#xff0c;此种逻辑…

百度搜索清理大量低质量网站

我是卢松松&#xff0c;点点上面的头像&#xff0c;欢迎关注我哦&#xff01; 据部分站长爆料&#xff1a;百度大规模删低质量网站的百度资源站长平台权限&#xff0c;很多网站都被删除了百度站长资源平台后台权限&#xff0c;以前在百度后台添加的网站大量被删除&#xff01;…

在Mac上安装及使用 dubbo-go

目录 dubbo-go 是什么dubbo-go 快速入门环境安装&#xff08;Mac 系统&#xff09;安装 Go语言环境安装 序列化工具protoc安装 dubbogo-cli 以及相关插件解决报错&#xff1a;zsh: command not found: protoc-gen-go&#xff0c;而其他两个工具都能正常输出版本号信息。 完成依…

[贪心] 拼接最小数

这道题思路并不难&#xff0c;我主要想学习其一些对于字符串的处理。 代码如下&#xff1a; #include <iostream> #include <string> #include <algorithm> using namespace std;const int MAXN 10000; string nums[MAXN];bool cmp(string a, string b) {…

Java当中的object介绍以及相关方法介绍

文章目录 前言 1. object介绍 1.1 简单介绍 1.2 object的相关方法 2. object相关方法的介绍 2.0 JAVA同步锁 synchronized(this)、synchronized(class)与synchronized(Object)的区别 2.1 Object之wait 2.1.1 另外两种wait方法 2.1.2 Object中notify&#xff0c;notify…

STM32f103入门(8)TIM输入捕获输入捕获测频率PWMI测占空比

TIM输入捕获 频率测量输入捕获基本结构PWMI基本结构主从触发模式输入捕获测量频率PWMI测占空比 频率测量 输入捕获基本结构 CNT计数一个周期&#xff0c;转运到CCR1里面去&#xff0c;CNT0 这时候CCR1N FxFc/N Fc cnt的驱动时钟 这时候就可以得到频率 Fc72M/PSC PWMI基本结构 …

STM32微控制器的低功耗模式

STM32微控制器的低功耗模式(Low-power modes):Sleep mode、Stop mode 和 Standby mode。 1.1 Sleep Mode(睡眠模式): 把STM32微控制器当作一位劳累的工人,他在工作过程中需要短暂的休息。在Sleep模式下,微控制器会关闭一部分电路,减小功耗,但仍然保持对中央处理单…

【Spring Boot】通过AOP拦截Spring Boot日志并将其存入数据库

文章目录 前言摘要AOP介绍AOP的实现添加依赖配置数据库连接定义日志实体类定义日志拦截器使用AOP拦截日志并保存到数据库中 代码方法介绍测试用例全文小结 前言 在软件开发中&#xff0c;常常需要记录系统运行时的日志。日志记录有助于排查系统问题、优化系统性能、监控操作行…

滑动窗口和双指针

滑动窗口和双指针 一、循环不变量1.1 定义1.2 总结 二、使用循环不变量写对代码2.1 注意2.2 总结 三、滑动窗口3.1 固定长度的滑动窗口&#xff08;同向交替移动的两个变量&#xff09;3.2 不定长度的滑动窗口3.2.1 定义3.2.2 总结 3.3 计数问题3.3.1 标准3.3.2 总结 3.4 使用数…

three.js(一)创建场景添加物体

目录 前言 一、创建Three世界 1.导入Three.js 2.引入three 3.创建基本结构 4.创建场景、相机、渲染器 场景 相机 渲染器 二、向场景中存放物体 1.创建一个物体 几何体 材质 网格模型 前言 官方网站https://threejs.org/网站目录翻译 文档连接https://threejs.org/…

postgresql-条件表达式

postgresql-条件表达式 简单Case表达式搜索Case表达式缩写函数总结 简单Case表达式 select e.first_name , e.last_name , e.department_id , case e.department_id when 90 then 管理when 60 then 开发else 其他end as "部门" from cps.public.employees e ;-- 统…

JavaWeb 文件上传和下载

目录 一、文件上传 1.文件上传和下载的使用说明 : 2.文件上传基本原理 : 3.文件上传经典案例 : 3.1 页面实现: 3.2 servlet实现 : 3.3 工具类实现 : 3.4 运行测试 : 3.5 注意事项 : 二、文件下载 1.文件下载基本原理 : 2.文件下载经典案例 : 2.1 准备工作 2.2 页面…

2022年03月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:多项式相加 我们经常遇到两多项式相加的情况, 在这里, 我们就需要用程序来模拟实现把两个多项式相加到一起。 首先, 我们会有两个多项式,每个多项式是独立的一行, 每个多项式由系数、 幂数这样的多个整数对来表示。 如多项式 2…

专业的视觉特效处理包,FxFactory 8 Pro for Mac助您打造精彩视频

FxFactory 8 Pro for Mac是一款强大的视觉特效处理包&#xff0c;专门为Mac用户设计。它集成了超过200种高质量的视觉效果和过渡效果&#xff0c;可以轻松地应用于各种视频项目中。该软件提供了一个直观的界面&#xff0c;用户可以通过简单拖放操作将特效应用到视频片段上。它支…

【golang】调度系列之goroutine

前面的两篇&#xff0c;从相对比较简单的锁的内容入手(也是干货满满)&#xff0c;开始了go的系列。这篇开始&#xff0c;进入更核心的内容。我们知道&#xff0c;go应该是第一门在语言层面支持协程的编程语言(可能是我孤陋寡闻)&#xff0c;goroutine也完全算的上是go的门面。g…

[SpringBoot3]博客管理系统(源码放评论区了)

八、博客管理系统 创建新的SpringBoot项目&#xff0c;综合运用以上知识点&#xff0c;做一个文章管理的后台应用。依赖&#xff1a; Spring WebLombokThymeleafMyBatis FrameworkMySQL DriverBean Validationhutool 需求&#xff1a;文章管理工作&#xff0c;发布新文章&…

Web安全——穷举爆破上篇(仅供学习)

Web安全 一、概述二、常见的服务1、burpsuite 穷举后台密码2、burpsuite 对 webshell 穷举破解密码3、有 token 防御的网站后台穷举破解密码3.1 burpsuite 设置宏获取 token 对网站后台密码破解3.2 编写脚本获取token 对网站后台密码破解 4、针对有验证码后台的穷举方法4.1 coo…