【移动机器人】基于JADE改进差分算法的多AGV轨迹规划

news2024/11/18 8:25:38

  最近帮同学做个东西,但是问题在于是之前从没接触过的领域–移动机器人轨迹规划,虽然也是搞机器人的,但是对 AGV 那边的情况是一无所知,这次能完成也算是挑战成功。此次任务目的是多辆AGV小车搬运货物,保证搬运总时间最短并且小车与货物之间,小车与小车之间无碰撞。

0 引言

  单 AGV 的路径规划是基础,单 AGV 的路径规划是指在已知起点和终点,所在环境地图存在多个货物的情况下,为存取货物的 AGV 规划一条符合要求的高效且最优路径。所以需要研究的问题有两个:AGV 运行环境建模和 AGV 路径规划算法
  而在实际应用中,因为单台 AGV 运输量有限,不能满足多任务高效的运输任务。所以在大多数仓库中,多 AGV 运输是必不可少的。AGVS 系统调度可以概括为:在一个仓库中,有多个货物放在不同起始位置,需要使用多个 AGV 将这些货物运输到不同的目标位置,并使得整体运输效率保持较高水平。多 AGV 调度系统在运行过程中需要解决的问题:AGVS 的路径规划、多任务的分配、动态的调度规划

1 地图环境建模

  采用栅格地图法作为 AGV 的运行环境,其原理是建立一个二维数组,用不同的数值代表不同的含义,基于任务要求,建立好后的栅格地图如下:


  多AGV运行环境图包括出发区、充电区、监测区、货物A的两个生产区、货物B的三个生产区、货物A的两个入库点,货物B的两个入库点。货物的颜色代表了对应颜色的小车需要完成的任务,本文的研究场景为:多 AGV 在接收到搬运任务后,会按照规划好的最优拣选路径从当前位置出发,前往货物点取货物,再送到对应的出货站台,然后前往下一个货物点取货物,再去对应的出货站台,在执行完所有搬运任务后,返回初始位置。

2 AGVS的路径规划算法

  A*算法是一种全局规划算法,可以根据给定的起点和目标点的位置在全局的地图上规划出一条最优路径。A*算法是将地图虚拟化,划分成一个个小方块,从起点开始搜索周围的点,然后选出一个新的点作为起点进行搜索,重复进行该过程直到找到终点。其优点是能够实现静态环境中的最优路径搜索,由于评价函数的存在,可以减少对边缘节点的搜索,因此选用A*算法作为路径规划的算法。
  传统的 A*算法主要将总长度最短作为优化目标。但一味的追求长度最短,将会导致 AGV 在行驶过程中频繁的转向,由于转弯会进行加速和减速的过程,时间成本要比直线行驶高出许多,而且使整体路径不够平滑。针对此问题,其中一个改进策略是在原有的 A*算法启发函数上增加转弯代价,以减少一些不必要的转弯。改进后的 A*算法为
f ( n ) = g ( n ) + h ( n ) + k f\left( n \right) =g\left( n \right) +h\left( n \right) +k f(n)=g(n)+h(n)+k式中, h ( n ) h\left( n \right) h(n) 是启发函数,采用曼哈顿距离, k k k 是转弯代价。

3 动态的调度规划

  对于单 AGV 搬运来说,只用 A*算法能够满足任务要求,但当多个 AGV 在系统内同时运行时,如果只按照单车搬运路径规划算法对每个 AGV 的拣选路径进行规划,而没有考虑多个 AGV 之间的相互影响,则可能出现几台 AGV 之间发生冲突和死锁的现象,基于此,提出一种时间窗算法来解决此类问题。
  时间窗原理是 AGV 在通过某个节点或者某段路径时的时间段,根据节点或路径被 AGV 的占用情况来协调 AGV 的路径规划情况,合理安排 AGV 的行走路径和通过各节点或路径的时间点,后一个 AGV 的路径规划建立在前面已经规划好路径的 AGV 的时间窗基础上,从而避免小车之间发生冲突。
  此时需要对 AGV 运作情况做一些假设:

  基于以上假设,可以得到小车在经过每个节点时的路径信息与时间信息,从而进行时间窗规划,避免小车冲突。

3.1 对于小车冲突类型的解决方式

  小车之间的冲突类型主要包括:节点冲突(十字冲突)、相向节点冲突、相向冲突三种

对应的冲突解决方式定义如下:


然后编写代码进行实现以上定义即可,这里不再赘述。

4 多任务的分配 - JADE算法

  排好顺序的任务合理的分配叫做多任务分配。通常来说,完成多任务分配的功能,首先需要明确任务分配的目标,可以使用 AGV 行驶最短路程作为单一指标,也可以使用 AGV 执行任务时间最少和距离最短等多重目标作为指标。这里采用任务总时间 T T T 作为指标。
  JADE算法是一种优化算法,是DE算法的改进。JADE是通过使用可选的外部归档实施新的变异策略,外部归档利用历史数据提供进度方向信息。并以自适应方式更新控制参数 F,Cr 来提高优化性能,JADE与DE相似的地方不再赘述(初始化,交叉,选择),JADE只改变了变异阶段,另外还将F和Cr参数自适应了。
带外部存档的变异策略:DE/current-to-pbest with external archive:


上式中, x ~ r 2 , g \mathbf{\tilde{x}}_{r2,g} x~r2,g 表示选取自当前群体和外部归档的∪集中,即有一部分个体是从外部归档中选择的,外部归档与此时此刻的群体不相似,扩大了群体的多样性,避免陷入局部最优。归档操作非常简单,归档文件初始化为空。然后,在每代之后,将选择过程中失败的父解添加到存档中。如果归档大小超过某个阈值,则从归档中随机删除一些解决方案以使归档大小保持在某个值。
  然后对交叉因子 C R CR CR 和变异因子 F F F 进行参数自适应, C R CR CR 采用平均值策略, F F F 采用 Lehmer 均值策略,此处不细说。

5 仿真结果与分析

运行效果如下

由仿真结果可以看出,本次仿真达到了研究目的,仿真实验成功。


  JADE迭代曲线如下,种群规模50,在迭代至6次左右进入收敛状态,找到了最佳任务分配方案与最小花费时间值。


JADE算法寻优结果如下,输出了最优种群值与最小时间花费值。

总结

  本文以多 AGV 为研究对象,研究了多 AGV 在搬运作业中的路径规划问题,利用A*算法实现了多 AGV 的最短路径规划,同时引入时间窗算法,使得多 AGV 系统的冲突问题得以解决,最后利用优化算法JADE,对路径规划总时间进行寻优迭代,找到了最佳分配方案与最小花费时间,实现了多 AGV 系统的全局无冲突路径规划。

  通过此处学习,学到了路径规划算法A*找最短路径,时间窗算法避免小车冲突,JADE优化算法迭代寻优,此次学习收获颇丰,感谢同学提供的机会同时也感谢自己。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/957267.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git学习part1

02.尚硅谷_Git&GitHub_为什么要使用版本控制_哔哩哔哩_bilibili 1.Git必要性 记录代码开发的历史状态 ,允许很多人同时修改文件(分布式)且不会丢失记录 2.版本控制工具应该具备的功能 1)协同修改 多人并行不悖的修改服务器端…

MinIO分布式存储k8s集群部署

一、MinIO是什么 MinIO是go开发的,高性能分布式存储;基于GNU AGPL v3开源,可免费使用; 官网:https://min.io/ github: https://github.com/minio/minio 官网宣传MinIO是世界上速度最快的分布式对象存储; …

Typora导出的PDF目录标题自动加编号

Typora导出的PDF目录标题自动加编号 在Typora主题文件夹增加如下文件后,标题便自动加上了编号: https://gitcode.net/as604049322/blog_data/-/blob/master/base.user.css 例如: 但是导出的PDF中,目录却没有编号: 这…

ConsoleApplication17_2项目免杀(Fiber+VEH Hook Load)

加载方式FiberVEH Hook Load Fiber是纤程免杀,VEH是异常报错,hook使用detours来hook VirtualAlloc和sleep,通过异常报错调用实现主动hook 纤程Fiber的概念:纤程是比线程的更小的一个运行单位。可以把一个线程拆分成多个纤程&#…

高可用集群介绍

一、高可用集群概念 高可用集群( High Availability Cluster, HA 集群),其中高可用的含义是最大限度地可以使用。从集群 的名字上可以看出,此类集群实现的功能是保障用户的应用程序持久、不间断地提供服务。当应用程序出现故障或…

XSSchallenge1-20

test1 第一题直接在test插入XSS代码即可 test2 第二关对内容进行”“包裹 这里可以采用”>来绕过 test3 代码审计发现这里用了htmlspecialchars函数&#xff0c;这个函数对<>和’ “等进行了转义&#xff0c;这里可以用事件来绕过 test4 这里用了str_replace&a…

vue+elementUI el-table实现单选

if (selection.length > 1) {this.$refs.table.clearSelection();this.$refs.table.toggleRowSelection(selection.pop());}

Kubernetes技术--k8s核心技术持久化存储

有时候需要在集群中进行一些重要的数据进行持久化存储,然后需要的时候再进行挂载,那么下面我们一起来看看如何实现数据的持久化存储操作。 1.nfs网络存储 -1.找一台服务器做nfs的服务端,安装nfs。(这里我们直接在master上实现)。 这里应该找再单独的搭建一个node节点做持…

Linux多线程同步机制(下)

文章目录 前言一、读写锁二、条件变量总结 前言 一、读写锁 多线程同步机制中的读写锁&#xff08;Read-Write Lock&#xff09;是一种特殊的锁机制&#xff0c;用于控制对共享资源的读写访问。读写锁允许多个线程同时读取共享资源&#xff0c;但在写操作时需要独占访问。 读…

2023年IT服务行业研究报告

第一章 行业概况 1.1 定义 IT服务行业是一个广泛的术语&#xff0c;涵盖了所有提供技术支持和服务的公司。这些服务包括系统集成&#xff0c;云计算服务&#xff0c;软件和硬件支持&#xff0c;网络服务&#xff0c;咨询服务&#xff0c;以及一系列其他类型的技术服务。此外&…

CodeFlow - 渐进式低代码开发管理工具(目前仅服务于前端)

CodeFlow 渐进式低代码开发管理工具 目前仅支持前端开发的使用。 简介 通过界面化操作&#xff0c;简化工作流程。 目前项目支持情况 前端 vue3 软件构想图 codeflow构想图.png 目前功能与界面 功能 前端Web 支持工程管理&#xff0c;将不同的项目归纳到一个工程下进行管理支持…

聊聊检索增强,LangChain一把梭能行吗?

背景 ChatGPT诞生之初&#xff0c;大家仿佛从中看到了未来&#xff1a;可以拿着大语言模型&#xff08;LLM&#xff09;这把锤子&#xff0c;锤遍业务上的钉子。其中最被看好的场景&#xff0c;莫过于搜索&#xff0c;不仅是微软、谷歌、百度这样的大公司将LLM用到自己的搜索业…

【ES6】Promise的入门介绍

Promise 是 JavaScript 中的一个对象&#xff0c;用于处理异步操作。Promise 对象代表一个最终可能完成&#xff08;并得到结果&#xff09;或失败&#xff08;并被拒绝&#xff09;的操作&#xff0c;以及其结果的值。 一个 Promise 有三种状态&#xff1a; Pending&#xf…

记录--vue 拉伸指令

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 在我们项目开发中,经常会有布局拉伸的需求,接下来 让我们一步步用 vue指令 实现这个需求 动手开发 在线体验 codesandbox.io/s/dawn-cdn-… 常规使用 解决拉伸触发时机 既然我们使用了指令的方式…

10.引入导航栏样式

1.导航栏为单独一个组件 在element-ui中引入导航栏的代码 &#xff01;注意 内容一定要在template中&#xff0c;否则bug遇到很久 <template><div><!-- 页面布局 --><el-container><!-- 侧边栏 --><el-aside width"200px"><…

模拟电子技术基础学习笔记二 杂质半导体

通过扩散工艺&#xff0c;在本征半导体中掺入少量合适的杂质元素&#xff0c;可得到杂质半导体。 按掺入的杂质元素不同&#xff0c;可形成N型半导体和P型半导体 控制掺入杂质元素的浓度&#xff0c;可以控制杂质半导体的导电性能。 一、N型半导体&#xff08;negative Semic…

独家首发!openEuler 主线集成 LuaJIT RISC-V JIT 技术

RISC-V SIG 预期随主线发布的 openEuler 23.09 创新版本会集成 LuaJIT RISC-V 支持。本次发版将提供带有完整 LuaJIT 支持的 RISC-V 环境并带有相关软件如 openResty 等软件的支持。 随着 RISC-V SIG 主线推动工作的进展&#xff0c;LuaJIT 和相关软件在 RISC-V 架构下的支持也…

活用 命令行通配符

本文是对 阮一峰老师命令行通配符教程[1]的学习与记录 通配符早于正则表达式出现,可以看作是原始的正则表达式. 其功能没有正则那么强大灵活,而胜在简单和方便. - 字符 切回上一个路径/分支 如图: !! 代表上一个命令, 如图: [Linux中“!"的神奇用法](https://www.cnblogs.…

【ES6】Promise.all用法

Promise.all()方法用于将多个 Promise 实例&#xff0c;包装成一个新的 Promise 实例。 const p Promise.all([p1, p2, p3]);上面代码中&#xff0c;Promise.all()方法接受一个数组作为参数&#xff0c;p1、p2、p3都是 Promise 实例&#xff0c;如果不是&#xff0c;就会先调…

华为数通方向HCIP-DataCom H12-821题库(单选题:181-200)

第181题 某管理员需要创建AS Path过滤器(ip as-path-iter)&#xff0c;允许AS_Path中包含65001的路由通过&#xff0c;那么以下哪一项配置是正确的? A、​​ip as-path-filter 1 permit 65001​​ B、​​ip as-path-filter 1 permit "65001​​ C、​​ip as-path-f…