C语言深入理解指针(非常详细)(一)

news2024/12/24 0:24:32

目录

  • 内存和地址
    • 内存
    • 编址的理解
  • 指针变量和地址
    • 取地址操作符(&)
    • 指针变量和解引用操作符(*)
      • 指针变量
      • 如何拆解指针类型
      • 解引用操作符
    • 指针变量的大小
  • 指针变量类型的意义
    • 指针的解引用
    • 指针+-整数
  • const修饰指针
    • const修饰变量
    • const修饰指针变量

内存和地址

内存

在将内存和地址时我们先举一个生活中的例子:
假设有⼀栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,
如果想找到你,就得挨个房子去找,这样效率很低,但是我们如果根据楼层和楼层的房间的情况,给每个房间编上号,如:

⼀楼:101102103...
⼆楼:201202203...

有了房间号,如果你的朋友得到房间号,就可以快速的找房间,找到你。

我们的姓名也是一样,如果没有姓名那么想去快速的找到一个不认识的人还是很难的

因此可见在一些情况下有编号可以提高办事的效率

我们知道内存是储存数据的,当我们需要计算这些数据时会用到CPU(中央处理器),CPU在需要用到数据时会在内存中读取,然后处理过后的数据也会放回内存
我们在买电脑时经常会看到8GB/16GB/32GB…那这些内存空间如何高效的管理呢?
其实是把内存划分为一个个的内存单元,每个内存单元的大小取1字节
下面补充一下计算机的常见单位

bit - ⽐特位     1byte = 8bit
byte - 字节      1KB = 1024byte
KB               1MB = 1024KB
MB               1GB = 1024MB
GB               1TB = 1024GB
TB               1PB = 1024TB
PB

其中,每个内存单元,相当于一个学生宿舍,一个字节空间里面能放8个比特位,就好比同学们住的八人间,每个人是⼀个比特位
每个内存单元也都有⼀个编号(这个编号就相当于宿舍房间的门牌号),有了这个内存单元的编号,CPU就可以快速找到⼀个内存空间。
生活中我们把门牌号也叫地址,在计算机中我们把内存单元的编号也称为地址。C语言中给地址起了新的名字叫:指针
所以我们可以理解为:
内存单元的编号是地址也是指针
内存储存的方式如图
在这里插入图片描述

编址的理解

CPU访问内存中的某个字节空间,必须知道这个字节空间在内存的什么位置,而因为内存中字节很多,所以需要给内存进行编址(就如同宿舍很多,需要给宿舍编号⼀样)。

计算机中的编址,并不是把每个字节的地址记录下来,而是通过硬件设计完成的

计算机内是有很多的硬件单元,而硬件单元是要互相协同工作的。所谓的协同,至少相互之间要能够进行数据传递。但是硬件与硬件之间是互相独立的,那么如何通信呢?答案很简单,用"线"连起来。
而CPU和内存之间也是有大量的数据交互的,所以,两者必须也用线连起来。不过,我们今天关心一组线,叫做地址总线

我们可以简单理解,32位机器有32根地址总线,每根线只有两态,表示0,1【电脉冲有无】,那么⼀根线,就能表示2种含义,2根线就能表示4种含义,依次类推。32根地址线,就能表示2^32种含义,每一种含义都代表一个地址。
地址信息被下达给内存,在内存上,就可以找到该地址对应的数据,将数据在通过数据总线传入CPU内寄存器。

在这里插入图片描述
所以在x86环境下char * 的指针变量和int*指针变量都是4个字节
在32位的机器上有32跟地址线,因此地址线上传输过来的电信号转换成数字信号,得到32个0/1组成的额外序列就是地址
而在x64环境下就有64个地址线,因此地址就是64个0/1组成的二进制序列,要存放这样的地址,就需要8个字节

指针变量和地址

取地址操作符(&)

理解了内存和地址的关系,我们再回到C语言,在C语言中创建变量其实就是向内存申请空间,比如:

#include <stdio.h>
int main()
{
int a = 10;
return 0;
}

上述的代码就是创建了整型变量a,内存中申请4个字节,用于存放整数10,其中每个字节都有地址,上图中4个字节的地址分别是:

0x006FFD70
0x006FFD71
0x006FFD72
0x006FFD73

那我们如何能得到a的地址呢?

这里就得学习⼀个操作符(&)-取地址操作符# const修饰指针

#include <stdio.h>
int main()
{
int a = 10;
&a;//取出a的地址
printf("%p\n", &a);
return 0;
}

按照上图图的例子,会打印处理:006FFD70&a取出的是a所占4个字节中地址较小的字节的地址
在这里插入图片描述
虽然整型变量占用4个字节,我们只要知道了第⼀个字节地址,顺藤摸瓜访问到4个字节的数据也是可行的

指针变量和解引用操作符(*)

指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,比如:0x006FFD70,这个数值有时候也是需要存储起来,方便后期再使用的,那我们把这样的地址值存放在哪里呢?答案是:指针变量

#include <stdio.h>
int main()
{
int a = 10;
int* pa = &a;//取出a的地址并存储到指针变量pa中
return 0;
}

指针变量也是⼀种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址。

如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?

int a = 10;
int * pa = &a;

这里pa左边写的是 int* , * 是在说明pa是指针变量,而前面的 int 是在说明pa指向的是整型(int)类型的对象
类似的如果有一个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?

char ch = 'w';
char *pc = &ch;

解引用操作符

当我们将地址保存在指针变量后,我们要怎么使用呢?由于只保存了地址,因此我们需要根据地址找到对应的数据。而如何找到对应的数据就需要用到解引用操作符(*)。

 #include <stdio.h>
 int main()
{
int a = 100;
int* pa = &a;
*pa = 0;
return 0;
}

*pa 的意思就是通过pa中存放的地址,找到指向的空间,pa其实就是a变量了;所以pa=0,这个操作符是把a改成了0
但是这里有一个疑问就是为什么要用指针来修改变量呢?为什么不直接a=0,?
其实在某些情况下,用指针会更加方便,比如:
在这里插入图片描述
我们可以看出打印的a值和b值不同,原因在于我们传的方式不同,一个传入了地址,一个没有传入,没有传入地址的b即使在函数中被修改,出了函数也无法保留修改的值,而传入地址的a,被修改后是可以保留的。
举个例子(例子可能不是很好,但差不多就是那个意思):你有一个房子在装修,装修后房子的地址没有变,但是房子却变了

指针变量的大小

前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做一个地址,那么一个地址就是32个bit位,需要4个字节才能存储。
如果指针变量是用来存放地址的,那么指针变量的大小就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,一个地址就是64个二进制位组成的二进制序列,存储起来就需要8个字节的空间,指针变的大小就是8个字节

在这里插入图片描述
在这里插入图片描述
结论:
• 32位平台下地址是32个bit位,指针变量大小是4个字节
• 64位平台下地址是64个bit位,指针变量大小是8个字节
• 注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的

指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是一样的,为什么还要有各种各样的指针类型呢

指针的解引用

//代码1
#include <stdio.h>
int main()
{
int n = 0x11223344;
int *pi = &n;
*pi = 0;
return 0;
}
//代码2
#include <stdio.h>
int main()
{
int n = 0x11223344;
char *pc = (char *)&n;
*pc = 0;
return 0;
}

调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第一个字节改为0。
结论:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。
比如: char * 的指针解引用就只能访问一个字节,而int*的指针的解引用就能访问四个字节

指针±整数

#include <stdio.h>
int main()
{
int n = 10;
char *pc = (char*)&n;
int *pi = &n;
printf("%p\n", &n);
printf("%p\n", pc);
printf("%p\n", pc+1);
printf("%p\n", pi);
printf("%p\n", pi+1);
return 0;
}

在这里插入图片描述
我们可以看出, char * 类型的指针变量+1跳过1个字节, int 类型的指针变量+1跳过了4个字节。这就是指针变量的类型差异带来的变化。
结论:指针的类型决定了指针向前或者向后走一步有多大
(距离)

const修饰指针

const修饰变量

变量是可以修改的,如果把变量的地址交给一个指针变量,通过指针变量的也可以修改这个变量
但是如果我们希望一个变量加上一些限制,不能被修改,怎么做呢?这就是const的作用

#include <stdio.h>
int main()
{
int m = 0;
m = 20;//m是可以修改的
const int n = 0;
n = 20;//n是不能被修改的
return 0;
}

上述代码中n是不能被修改的,其实n本质是变量,只不过被const修饰后,在语法上加了限制,只要我们在代码中对n就行修改,就不符合语法规则,就报错,致使没法直接修改n。但是如果我们绕过n,使用n的地址,去修改n就能做到了

#include <stdio.h>
int main()
{
const int n = 0;
printf("n = %d\n", n);
int*p = &n;
*p = 20;
printf("n = %d\n", n);
return 0;
}

在这里插入图片描述
我们可以看到这里一个确实修改了,但是我们还是要思考一下,为什么n要被const修饰呢?就是为了不能被修改,如果p拿到n的地址就能修改n,这样就打破了const的限制,这是不合理的,所以应该让p拿到n的地址也不能修改n

const修饰指针变量

#include <stdio.h>
//代码1
void test1()
{
int n = 10;
int m = 20;
int *p = &n;
*p = 20;
p = &m; 
}
void test2()
{
//代码2
int n = 10;
int m = 20;
const int* p = &n;
*p = 20;   x
p = &m; 
}
void test3()
{
int n = 10;
int m = 20;
int *const p = &n;
*p = 20; 
p = &m;    x
}
void test4()
{
int n = 10;
int m = 20;
int const * const p = &n;
*p = 20;   x
p = &m;    x
}
int main()
{
//测试⽆const修饰的情况
test1();
//测试const放在*的左边情况
test2();
//测试const放在*的右边情况
test3();
//测试*的左右两边都有const
test4();
return 0;
}

结论:const修饰指针变量的时候
• const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本身的内容可变。
• const如果放在 * 的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/954332.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

智慧园区封闭化管理之人车定位及轨迹追踪

园区封闭化管理在提高园区安全性、管理效率方面发挥着重要作用&#xff0c;人车定位及轨迹追踪是推动园区智慧封闭化管理的关键技术。本文将探讨人车定位及轨迹追踪技术在智慧园区封闭化管理中的应用&#xff0c;带您了解数字化时代园区管理的创新之路。 一、人车定位技术的突破…

Echarts遇到Vue3时遇到的问题

将vue2的Echarts代码迁移到了vue3项目上&#xff0c;引发的问题 问题描述&#xff1a; 1. 点击图例legend时刻度轴偏移&#xff0c;图像不展示&#xff0c;以及报错 初始chart正常.图 点击图例后的chart和报错.图 2. 调用resize()不生效且报错 初始正常.图 修改屏幕尺寸调用r…

[ Linux Audio 篇 ] Linux Audio 子系统资料集锦

Linux Audio 子系统资料 背景OSS VS ALSAALSA 驱动ALSA libALSA Plugin音频延迟音频调试音频书籍 背景 最近需要准备Linux Audio 相关的PPT&#xff0c;于是将以往的知识点和遇到的问题进行整理和梳理&#xff0c;以便向大家讲解。同时&#xff0c;还整理了在这个过程中发现的…

小技巧,将你的Python代码运行情况用动画实时呈现

咱们初学者练习编程时&#xff0c;常常难以理解简单循环&#xff0c;数据结构&#xff0c;迭代的操作原理。 现在不怕了&#xff0c;我们可以借助一个在线工具逐步执行代码&#xff0c;并直观查看其运行过程。 它是由 Philip Guo 开发的一个免费教育工具&#xff0c;帮助学生攻…

这5个理由告诉你为什么要采用微前端架构

微前端是一种前端开发的架构方法&#xff0c;已经变得越来越流行&#xff0c;这也预示着它很可能代表 Web 开发的未来。所以学习这种架构带来的好处对你的应用程序和开发团队是不言而喻的。 本文将分享我和我的团队使用这种方法两年来的经验所得&#xff0c;以及帮助你分析在你…

仿弹壳特工队,绝地反击活动使用电池翻格子小游戏(JAVA小游戏)

近来太无聊&#xff0c;玩了一款割草游戏&#xff0c;里面有个活动感觉挺好玩的&#xff0c;像扫雷一样&#xff0c;寻找线索(灯泡)&#xff0c;在这里使用JAVA语言也简单实现下游戏。 先上效果图&#xff0c;鼠标点击对应的块&#xff0c;可以展开相连的方块&#xff0c;点击…

nvm集合node版本,解决新版本jeecgboot3.5.3前端启动失败问题

jeecgboot前端3.5.3页面如下 使用之前的pnpm启动会报错&#xff0c;pnpm是node进行安装的&#xff0c;查询后发现&#xff0c;vue3版本的页面至少需要node16版本&#xff0c;我之前的版本只有15.5&#xff0c;适用于vue2 那么我将先前的node15.5版本删除&#xff0c;然后安装…

【知识分享】C语言应用-易错篇

一、C语言简介 C语言结构简洁&#xff0c;具有高效性和可移植性&#xff0c;因此被广泛应用。但究其历史的标准定义&#xff0c;C语言为了兼容性在使用便利性作出很大牺牲。在《C陷阱与缺陷》一书中&#xff0c;整理出大部分应用过程中容易出错的点&#xff0c;本文为《C陷阱与…

ffmpeg把RTSP流分段录制成MP4,如果能把ffmpeg.exe改成ffmpeg.dll用,那音视频开发的难度直接就降一个维度啊

比如&#xff0c;原来我们要用ffmpeg录一段RTSP视频流转成MP4&#xff0c;我们有两种方案&#xff1a; 方案一&#xff1a;可以使用以下命令将rtsp流分段存储为mp4文件 ffmpeg -i rtsp://example.com/stream -vcodec copy -acodec aac -f segment -segment_time 3600 -reset_t…

ubuntu20.04+ROS noetic在线运行单USB双目ORB_SLAM

双目摄像头主要有以下几种&#xff0c;各有优缺点。 1.单USB插口&#xff0c;左右图像单独输出2.双USB插口&#xff0c;左右图像单独输出&#xff08;可能存在同步性问题&#xff09;3.双USB插口&#xff0c;左右图像合成输出4.单USB插口&#xff0c;左右图像合成输出 官方版…

【C++】线程安全问题

原子类型非线程安全 #include <iostream> #include <thread>int main() {int num 0;int count 100000;std::thread thread1([&](){for(int i 0; i < count; i){num;}});std::thread thread2([&](){for(int i 0; i < count; i){num;}});std::thr…

jsp+servlet零食商城java网上购物超市Mysql源代码

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目介绍 项目名:网上零食商城 技术栈 jspservlet 系统有3权限…

动静分红,循环购模式:微三云门门

动静分红&#xff0c;循环购模式&#xff1a;微三云门门 商业模式概述&#xff1a; 动静分红&#xff0c;循环购模式是一种创新商业模式&#xff0c;旨在解决平台用户复购率和C端裂变的难题。该模式以能量值和贡献值为核心资产&#xff0c;结合动态和静态奖金池&#xff0c;为…

产品展示视频拍摄制作流程

通过精心策划和制作的产品展示视频&#xff0c;展示产品的独特魅力和卓越功能。激发受众对产品的兴趣和购买欲望。为了确保产品展示视频的制作质量和效果&#xff0c;需要团队一起探讨具体的拍摄制作流程。深圳产品活动视频制作公司老友记小编为您分析产品展示视频的拍摄制作过…

中国人民大学与加拿大女王金融硕士——为什么读金融硕士,这些理由够不够?

金融硕士要不要读&#xff1f;身在金融行业的我们拥有的本科学历还够用吗&#xff1f;随着教育的发展&#xff0c;高学历的人才越来越多。金融行业好多职位的招聘门槛已经提升到硕士学历了。面对职场高学历人才的涌入&#xff0c;对于在职的我们来说&#xff0c;是一种潜在的压…

【STM32】IIC的初步使用

IIC简介 物理层 连接多个devices 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个 I2C 通讯总线中&#xff0c;可连接多个 I2C 通讯设备&#xff0c;支持多个通讯主机及多个通讯从机。 两根线 一个 I2C 总线只使用两条总线线路&#xff0c;一条双向串行数…

linux————pxe网络批量装机

目录 一、概述 什么是pxe pxe组件 二、搭建交互式pxe装机 一、配置基础环境 二、配置vsftpd 三、配置tftp 四、准备pxelinx.0文件、引导文件、内核文件 一、准备pxelinux.0 二、准备引导文件、内核文件 五、配置dhcp 一、安装dhcp 二、配置dhcp 六、创建default文…

要用linux,不会shell 基本语法搞不来~

01.变量 1、环境变量 echo $PATH 2、自定义变量 hello"hello_world" echo $hello 3、存储 Linux 命令执行结果作为变量 (2 种方式&#xff0c;推荐使用第二中&#xff0c;第一种是 ~键上面的斜点比较难识别) filesls -al path(pwd)注意点定义变量号两边不能有空…

koa路由自动注册

安装 pnpm install require-directory 路由加载 static initRouters() {// 绝对路径const apiDir ${process.cwd()}/router;// 自动加载路由requireDirectory(module, apiDir, {visit: whenLoadModule});// 判断加载模块是否是路由function whenLoadModule(obj) {if (obj i…

小白带你学习linux的ELK日志收集系统

目录 目录 一、概述 1、ELK由三个组件构成 2、作用 3、为什么使用&#xff1f; 二、组件 1、elasticsearch 2、logstash 3、kibana 三、架构类型 1、ELK 2、ELKK 3、ELFK 4、ELFKK 四、ELK日志收集系统集群实验 1、实验拓扑 2、环境配置 3、 安装node1与node2…