此示例说明如何使用 MATLAB® 构造几种不同类型的微分方程并求解。MATLAB 提供了多种数值算法来求解各种微分方程:
1.初始值问题
vanderpoldemo 是用于定义 van der Pol 方程的函数
type vanderpoldemo
function dydt = vanderpoldemo(t,y,Mu)
%VANDERPOLDEMO Defines the van der Pol equation for ODEDEMO.
% Copyright 1984-2014 The MathWorks, Inc.
dydt = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)];
该方程写作包含两个一阶常微分方程 (ODE) 的方程组。将针对参数 μ 的不同值计算这些方程。为了实现更快的积分,您应该根据
μ
的值选择合适的求解器。
tspan = [0 20];
y0 = [2; 0];
Mu = 1;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode45(ode, tspan, y0);
% Plot solution
plot(t,y(:,1))
xlabel('t')
ylabel('solution y')
title('van der Pol Equation, \mu = 1')
对于较大的 μ,问题将变为刚性。此标签表示拒绝使用普通方法计算的问题。这种情况下,要实现快速积分,需要使用特殊的数值方法。
ode15s
、
ode23s
、
ode23t
和
ode23tb 函数可有效地求解刚性问题。当
μ
= 1000
时,van der Pol 方程的求解使用
ode15s,初始条件相同。您需要将时间范围大幅度延长到[0, 3000
]才能看到解的周期性变化。
tspan = [0, 3000];
y0 = [2; 0];
Mu = 1000;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode15s(ode, tspan, y0);
plot(t,y(:,1))
title('van der Pol Equation, \mu = 1000')
axis([0 3000 -3 3])
xlabel('t')
ylabel('solution y')
2.边界值问题
bvp4c 和
bvp5c 可以求解常微分方程的边界值问题。示例函数
twoode
将一个微分方程写作包含两个一阶 ODE 的方程组。此微分方程为
type
twoode
function dydx = twoode(x,y)
%TWOODE Evaluate the differential equations for TWOBVP.
%
% See also TWOBC, TWOBVP.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
dydx = [ y(2); -abs(y(1)) ];
函数 twobc
求解该问题的边界条件为:
y(
0)= 0
和
y(
4)= − 2
。
type
twobc
function res = twobc(ya,yb)
%TWOBC Evaluate the residual in the boundary conditions for TWOBVP.
%
% See also TWOODE, TWOBVP.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
res = [ ya(1); yb(1) + 2 ];
在调用 bvp4c 之前,您必须为要在网格中表示的解提供一个猜想值。然后,求解器就像对解进行平滑处理一样修改网格。
bvpinit 函数以您可以传递给求解器
bvp4c
的形式设定初始猜想值。对于
[0 1 2 3 4] 的网格以及y(x)
= 1
和
y′ (
x)
= 0
的常量猜想值,对
bvpinit
的调用为:
solinit = bvpinit([0 1 2 3 4],[1; 0]);
利用这个初始猜想值,您可以使用 bvp4c
对该问题求解。使用
deval
计算
bvp4c 在某些点返回的解,然后绘制结果值。
sol = bvp4c(@twoode, @twobc, solinit);
xint = linspace(0, 4, 50);
yint = deval(sol, xint);
plot(xint, yint(1,:));
xlabel('x')
ylabel('solution y')
hold on
此特定的边界值问题实际上有两种解。通过将初始猜想值更改为 y x = − 1 和 y′ x = 0,可以求出另一个解。
solinit = bvpinit([0 1 2 3 4],[-1; 0]);
sol = bvp4c(@twoode,@twobc,solinit);
xint = linspace(0,4,50);
yint = deval(sol,xint);
plot(xint,yint(1,:));
legend('Solution 1','Solution 2')
hold off
3.时滞微分方程
dde23、
ddesd
和
ddensd
可以求解具有各种时滞的时滞微分方程。示例
ddex1
、
ddex2
、
ddex3、ddex4
和
ddex5 构成了这些求解器的迷你使用教程。ddex1
示例说明如何求解微分方程组
您可以使用匿名函数表示这些方程
ddex1fun = @(t,y,Z) [Z(1,1); Z(1,1)+Z(2,2); y(2)];
问题的历史解(t
≤ 0
时)固定不变:
您可以将历史解表示为由 1 组成的向量。
ddex1hist = ones(3,1);
采用二元素向量表示方程组中的时滞。
lags = [1 0.2];
将函数、时滞、历史解和积分区间 0, 5 作为输入传递给求解器。求解器在整个积分区间生成适合绘图的连续解。
sol = dde23(ddex1fun, lags, ddex1hist, [0 5]);
plot(sol.x,sol.y);
title({'An example of Wille and Baker', 'DDE with Constant Delays'});
xlabel('time t');
ylabel('solution y');
legend('y_1','y_2','y_3','Location','NorthWest');
4.偏微分方程
pdepe 使用一个空间变量和时间对偏微分方程求解。示例
pdex1
、
pdex2
、
pdex3
、
pdex4
和
pdex5
构成了
pdepe 的迷你使用教程。此示例问题使用函数
pdex1pde
、
pdex1ic
和
pdex1bc。
pdex1pde 定义微分方程
type
pdex1pde
function [c,f,s] = pdex1pde(x,t,u,DuDx)
%PDEX1PDE Evaluate the differential equations components for the PDEX1 problem.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
c = pi^2;
f = DuDx;
s = 0;
pdex1ic 设置初始条件
u
(
x
, 0) = sin
πx
.
type
pdex1ic
function u0 = pdex1ic(x)
%PDEX1IC Evaluate the initial conditions for the problem coded in PDEX1.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
u0 = sin(pi*x);
pdex1bc 设置边界条件
type
pdex1bc
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
%PDEX1BC Evaluate the boundary conditions for the problem coded in PDEX1.
%
% See also PDEPE, PDEX1.
% Lawrence F. Shampine and Jacek Kierzenka
% Copyright 1984-2014 The MathWorks, Inc.
pl = ul;
ql = 0;
pr = pi * exp(-t);
qr = 1;
pdepe 需要提供空间离散
x
和时间向量
t(您要获取解快照的时间点)。使用包含 20 个节点的网格求解此问题,并请求五个
t
值的解。提取解的第一个分量并绘图。
x = linspace(0,1,20);
t = [0 0.5 1 1.5 2];
sol = pdepe(0,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
u1 = sol(:,:,1);
surf(x,t,u1);
xlabel('x');
ylabel('t');
zlabel('u');