【c语言】结构体内存对齐,位段,枚举,联合

news2025/1/23 6:14:07

之前学完结构体,有没有对结构体的大小会很疑惑呢??其实结构体在内存中存储时会存在内存对齐,捎带讲讲位段,枚举,和联合,跟着小张一起学习吧


结构体内存对齐

结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
    对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
    VS中默认的值为8
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

例1

struct S1
{
 char c1;
 int i;
 char c2;
};

如果没学过结构体的内存对齐的话,是不是觉得他的字节长度是6个字节呢??我之前也是这样认为的

编译运行:

在这里插入图片描述发现他的字节数为12,所以到底是怎么回事呢???

我们可以根据结构体的内存对齐规则计算一下该结构体的字节数
在这里插入图片描述
例2(结构体嵌套问题)

struct S4
{
 char c1;
 struct S1 s1;
 double d;
};
printf("%d\n", sizeof(struct S4));

编译运行:在这里插入图片描述

分析:在这里插入图片描述

为什么存在内存对齐?

  1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能
    在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的
    内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起

struct S1
{
 char c1;
 char c2;
 int i;

};

编译运行在这里插入图片描述
我们发现小于例1中的12个字节

修改默认对齐数

我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>

#pragma pack(1)//设置默认对齐数为8
struct S2
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
	//输出的结果是什么?
	
	printf("%d\n", sizeof(struct S2));
	return 0;
}

分析:在这里插入图片描述

位段

结构体讲完就得讲讲结构体实现 位段 的能力。
什么是位段
位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

struct A
{
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};

A就是一个位段类型。
那位段A的大小是多少?冒号后面的为对应变量所占的bit位

printf("%d\n", sizeof(struct A));

编译运行:
在这里插入图片描述

位段的内存分配

位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段
struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
int main()
{struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;}

分析:在这里插入图片描述
在这里插入图片描述
在一个字节里面放变量,如果继续放的时候该字节内的bit位不足以存放下一个变量,则在新的字节上存放新的变量

位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
    总结:
    跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

枚举``

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举
这里就可以使用枚举了

枚举类型的定义

enum Day//星期
{
 Mon,
 Tues,
 Wed,
 Thur,
 Fri,
 Sat,
 Sun
};

enum Sex//性别
{
 MALE,
 FEMALE,
 SECRET
}
enum Color//颜色
{
 RED,
 GREEN,
 BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。 {}中的内容是枚举类型的可能取
值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

当然在定义的时候也可以赋初值。 例如

enum Color//颜色
{
 RED=1,
 GREEN=2,
 BLUE=4
};

枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举? 枚举的优点:

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 防止了命名污染(封装)
  4. 便于调试
  5. 使用方便,一次可以定义多个常量

枚举的使用

enum Color//颜色
{
	RED=1 ,
	GREEN = 2,
	BLUE = 4
};
int main()
{
	//printf("%d\n", sizeof(union Un1));
	enum Color col=RED ;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异,枚举常量实质就是整型。
	col = 3.8;
	printf("%d", col);
}

在这里插入图片描述

联合(共用体)

联合类型的定义

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块
空间(所以联合也叫共用体)

联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为
联合至少得有能力保存最大的那个成员)。

union Un
{
	int i;
	char c;
};
union Un un;

int main()
{
	printf("%p\n", &(un.i));
	printf("%p\n", &(un.c));
	un.i = 0x11223344;
	un.c = 0x55;
	printf("%x\n", un.i);
}

编译运行:
在这里插入图片描述
执行完71行
在这里插入图片描述
执行完72行
在这里插入图片描述
验证了共用一个内存空间,修改是在修改同一个空间

联合大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

union Un1
{
	char c[5];
	int i;
};
int main()
{
	printf("%d\n", sizeof(union Un1));
	
}

编译运行:
在这里插入图片描述
分析:联合体大小首先是最大成员的大小,c[5]占5个字节,数组c[]每个元素大小为1,和vs默认对齐数是8,则他的对齐数是1,,i占4个字节,和vs默认对齐数是8,则他的对齐数是4,则最大对齐数是4,则联合体的大小为8

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/942740.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023.8.25 关于 Selenium 常用 API 详解

目录 引言 打开页面 查找页面元素 输入文本 点击操作 提交操作 清除文本 获取文本和属性值 ​编辑 选择多个元素 获取页面标题和URL 等待操作 浏览器操作 多层框架定位 窗口操作 屏幕截图 下拉框元素选择操作 ​编辑 执行脚本 文件上传 引言 本文讲的所有…

汇编-内中断

中断的意思是指&#xff0c; CPU不再接着(刚执行完的指令) 向下执行&#xff0c; 而是转去处理这个特殊信息。 8086CPU&#xff0c;当CPU内部有下面的情况发生的时候&#xff0c; 将产生相应的中断信息&#xff1a; (1)除法错误&#xff0c; 比如&#xff0c; 执行div指令产生…

springboot中使用ElasticSearch

引入依赖 修改我们的pom.xml&#xff0c;加入spring-boot-starter-data-elasticsearch <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>编写配…

如何有效进行RLHF的数据标注?

编者按&#xff1a;随着大语言模型在自然语言处理领域的广泛应用&#xff0c;如何从人类反馈进行强化学习&#xff08;RLHF&#xff09;已成为一个重要的技术挑战。并且RLHF需要大量高质量的人工数据标注&#xff0c;这是一个非常费力的过程。 本文作者在数据标注领域具有丰富经…

uniapp 开发之仿抖音,上下滑动切换视频、点击小爱心效果

效果图&#xff1a; 功能描述&#xff1a; 上下滑动视频&#xff0c;双击暂停&#xff0c;然后第一个视频再往上滑显示”已经滑到顶了“ 开始代码&#xff1a; 首先视频接口使用的公开的视频测试接口 开放API-2.0 官网展示 Swagger UI 接口文档 一…

DC电源模块不同的尺寸可以适应实际应用场景

BOSHIDA DC电源模块不同的尺寸可以适应实际应用场景 DC电源模块是现代电子设备的必备部件之一&#xff0c;其可提供稳定的直流电源&#xff0c;保证电子设备正常运行。DC电源模块尺寸的选择直接影响到其适应的应用场景及其性能表现。本文将从尺寸方面分析DC电源模块的适应性&a…

购买腾讯云服务器搭建网站全流程_新手建站

使用腾讯云服务器搭建网站全流程&#xff0c;包括轻量应用服务器和云服务器CVM建站教程&#xff0c;轻量可以使用应用镜像一键建站&#xff0c;云服务器CVM可以通过安装宝塔面板的方式来搭建网站&#xff0c;腾讯云服务器网分享使用腾讯云服务器建站教程&#xff0c;新手站长搭…

2023-08-28 LeetCode每日一题(插入区间)

2023-08-28每日一题 一、题目编号 57. 插入区间二、题目链接 点击跳转到题目位置 三、题目描述 给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。 在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的…

ARM寄存器组

CM3 拥有通用寄存器 R0‐R15 以及一些特殊功能寄存器。 R0-R7&#xff0c;通用目的寄存器 R0-R7也被称为低组寄存器&#xff0c;所有指令可以访问它们&#xff0c;它们的字长为32位&#xff0c;复位后的初始值是不可预料的。 R8-R12&#xff0c;通用目的寄存器 R8-R12也被称…

GNS3 在 Linux 上的安装指南

文章目录 GNS3 在 Linux 上的安装指南1. 基于 Ubuntu 的发行版安装 GNS32. 基于 Debian 的安装3. 基于 ArchLinux 的安装4. 从 Pypi 安装 GNS35. 启动 GNS3 服务端GNS3 在 Linux 上的安装指南 大家好,今天我们来聊聊如何在 Linux 上安装 GNS3。GNS3 是一个非常受欢迎的网络模…

C#,《小白学程序》第八课:列表(List)应用之二“编制高铁列车时刻表”

1 文本格式 /// <summary> /// 《小白学程序》第八课&#xff1a;列表&#xff08;List&#xff09;应用之二————编制高铁列车时刻表 /// 列车时刻表的每一行一般都是&#xff1a;车站 到达时间 出发时间 /// 两个车站之间的开行时间 time distance / speed /// 出发…

python web GUI框架-NiceGUI 教程(二)

python web GUI框架-NiceGUI 教程&#xff08;二&#xff09; streamlit可以在一些简单的场景下仍然推荐使用&#xff0c;但是streamlit实在不灵活&#xff0c;受限于它的核心机制&#xff0c;NiceGUI是一个灵活的web框架&#xff0c;可以做web网站也可以打包成独立的exe。 基…

系列十一、AOP

一、概述 1.1、官网 AOP的中文名称是面向切面编程或者面向方面编程&#xff0c;利用AOP可以对业务逻辑的各个部分进行隔离&#xff0c;从而使得业务逻辑各部分之间的耦合度降低&#xff0c;提高程序的可重用性&#xff0c;同时提高了开发的效率。 1.2、通俗描述 不通过…

MySQL中的free链表,flush链表,LRU链表

一、free链表 1、概述 free链表是一个双向链表数据结构&#xff0c;这个free链表里&#xff0c;每个节点就是一个空闲的缓存页的描述数据块的地址&#xff0c;也就是说&#xff0c;只要你一个缓存页是空闲的&#xff0c;那么他的描述数据块就会被放入这个free链表中。 刚开始数…

PHP自己的框架PDO数据表前缀、alias、model、table、join方法实现(完善篇九--结束)

一、实现功能&#xff0c;数据表前缀、alias、model、table、join方法实现 二、表前缀实现 1、config.php增加表前缀 DB_PEX>fa_,//数据库前缀 2、增加表前缀方法function.php function model($table){$modelnew ModelBase($table,config("DB_PEX"));return $m…

curl通过webdav操作alist

创建目录: url202320230828;curl -v -u "admin":"这里是密码" -X MKCOL "http://127.0.0.1:5244/dav/my189tianyi/${url2023}/" 上传文件: curl -v -u "admin":"这里是密码" -T /tmp/aa.json "http://127.0.0.1:52…

基于SSH的电影票预订系统

基于SSH的电影票预订系统 一、系统介绍二、功能展示1.其他系统实现五.获取源码 一、系统介绍 项目类型&#xff1a;Java web项目 项目名称&#xff1a;基于SSH的电影票预定系统 [dingpiao] 用户类型&#xff1a;有用户和管理员&#xff08;双角色&#xff09; 项目架构&…

C# 多线程交替按照指定顺序执行

1.关于AutoResetEvent和ManualResetEvent的区别解释如下&#xff1a; AutoResetEvent和ManualResetEvent是.NET中的两个线程同步类。它们之间的主要区别在于其释放信号的方式以及对等待线程的影响。 AutoResetEvent的作用是在等待的线程被信号唤醒后&#xff0c;将信号自动重…

Matlab图像处理-平移运算

几何运算 几何运算又称为几何变换&#xff0c;是将一幅图像中的坐标映射到另外一幅图像中的新坐标位置&#xff0c;它不改变图像的像素值&#xff0c;只是改变像素所在的几何位置&#xff0c;使原始图像按照需要产生位置、形状和大小的变化。 图像几何运算的一般定义为&#…

Atcoder Beginner Contest 317

A - Potions (atcoder.jp) AC代码: #include<iostream> #include<algorithm> #include<cstring> #include<cmath> #define endl \n //#define int long long using namespace std; typedef long long ll; const int N110; int a[N]; int n,h,x; void…