Linux网络编程:线程池并发服务器 _UDP客户端和服务器_本地和网络套接字

news2025/4/20 8:25:20

文章目录:

一:线程池模块分析

threadpool.c

二:UDP通信

1.TCP通信和UDP通信各自的优缺点

2.UDP实现的C/S模型

server.c

client.c

三:套接字 

1.本地套接字

2.本地套 和 网络套对比

server.c

client.c


一:线程池模块分析


struct threadpool_t {

    pthread_mutex_t lock;               /* 用于锁住本结构体 */    
    pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */

    pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */
    pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */

    pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */
    pthread_t adjust_tid;               /* 存管理线程tid */
    threadpool_task_t *task_queue;      /* 任务队列(数组首地址) */

    int min_thr_num;                    /* 线程池最小线程数 */
    int max_thr_num;                    /* 线程池最大线程数 */
    int live_thr_num;                   /* 当前存活线程个数 */
    int busy_thr_num;                   /* 忙状态线程个数 */
    int wait_exit_thr_num;              /* 要销毁的线程个数 */

    int queue_front;                    /* task_queue队头下标 */
    int queue_rear;                     /* task_queue队尾下标 */
    int queue_size;                     /* task_queue队中实际任务数 */
    int queue_max_size;                 /* task_queue队列可容纳任务数上限 */

    int shutdown;                       /* 标志位,线程池使用状态,true或false */
};


typedef struct {

    void *(*function)(void *);          /* 函数指针,回调函数 */
    void *arg;                          /* 上面函数的参数 */

} threadpool_task_t;                    /* 各子线程任务结构体 */

rear = 5 % 5

线程池模块分析:

	1. main();		

		创建线程池。

		向线程池中添加任务。 借助回调处理任务。

		销毁线程池。

	2. pthreadpool_create();

		创建线程池结构体 指针。

		初始化线程池结构体 {  N 个成员变量 }

		创建 N 个任务线程。

		创建 1 个管理者线程。

		失败时,销毁开辟的所有空间。(释放)

	3. threadpool_thread()

		进入子线程回调函数。

		接收参数 void *arg  --》 pool 结构体

		加锁 --》lock --》 整个结构体锁

		判断条件变量 --》 wait  -------------------170

	4. adjust_thread()

		循环 10 s 执行一次。

		进入管理者线程回调函数

		接收参数 void *arg  --》 pool 结构体

		加锁 --》lock --》 整个结构体锁

		获取管理线程池要用的到 变量。	task_num, live_num, busy_num

		根据既定算法,使用上述3变量,判断是否应该 创建、销毁线程池中 指定步长的线程。

	5. threadpool_add ()

		总功能:

			模拟产生任务。   num[20]

			设置回调函数, 处理任务。  sleep(1) 代表处理完成。

		内部实现:
	
			加锁

			初始化 任务队列结构体成员。   回调函数 function, arg

			利用环形队列机制,实现添加任务。 借助队尾指针挪移 % 实现。

			唤醒阻塞在 条件变量上的线程。
	
			解锁

	6.  从 3. 中的wait之后继续执行,处理任务。

		加锁
		
		获取 任务处理回调函数,及参数

		利用环形队列机制,实现处理任务。 借助队头指针挪移 % 实现。

		唤醒阻塞在 条件变量 上的 server。

		解锁

		加锁 

		改忙线程数++

		解锁

		执行处理任务的线程

		加锁 

		改忙线程数——

		解锁

	7. 创建 销毁线程

		管理者线程根据 task_num, live_num, busy_num  

		根据既定算法,使用上述3变量,判断是否应该 创建、销毁线程池中 指定步长的线程。

		如果满足 创建条件

			pthread_create();   回调 任务线程函数。		live_num++

		如果满足 销毁条件

			wait_exit_thr_num = 10;  

			signal 给 阻塞在条件变量上的线程 发送 假条件满足信号    

			跳转至  --170 wait阻塞线程会被 假信号 唤醒。判断: wait_exit_thr_num  > 0 pthread_exit();  

threadpool.c

#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>
#include <errno.h>
#include "threadpool.h"

#define DEFAULT_TIME 10                 /*10s检测一次*/
#define MIN_WAIT_TASK_NUM 10            /*如果queue_size > MIN_WAIT_TASK_NUM 添加新的线程到线程池*/ 
#define DEFAULT_THREAD_VARY 10          /*每次创建和销毁线程的个数*/
#define true 1
#define false 0

typedef struct {
    void *(*function)(void *);          /* 函数指针,回调函数 */
    void *arg;                          /* 上面函数的参数 */
} threadpool_task_t;                    /* 各子线程任务结构体 */

/* 描述线程池相关信息 */

struct threadpool_t {
    pthread_mutex_t lock;               /* 用于锁住本结构体 */    
    pthread_mutex_t thread_counter;     /* 记录忙状态线程个数de琐 -- busy_thr_num */

    pthread_cond_t queue_not_full;      /* 当任务队列满时,添加任务的线程阻塞,等待此条件变量 */
    pthread_cond_t queue_not_empty;     /* 任务队列里不为空时,通知等待任务的线程 */

    pthread_t *threads;                 /* 存放线程池中每个线程的tid。数组 */
    pthread_t adjust_tid;               /* 存管理线程tid */
    threadpool_task_t *task_queue;      /* 任务队列(数组首地址) */

    int min_thr_num;                    /* 线程池最小线程数 */
    int max_thr_num;                    /* 线程池最大线程数 */
    int live_thr_num;                   /* 当前存活线程个数 */
    int busy_thr_num;                   /* 忙状态线程个数 */
    int wait_exit_thr_num;              /* 要销毁的线程个数 */

    int queue_front;                    /* task_queue队头下标 */
    int queue_rear;                     /* task_queue队尾下标 */
    int queue_size;                     /* task_queue队中实际任务数 */
    int queue_max_size;                 /* task_queue队列可容纳任务数上限 */

    int shutdown;                       /* 标志位,线程池使用状态,true或false */
};

void *threadpool_thread(void *threadpool);

void *adjust_thread(void *threadpool);

int is_thread_alive(pthread_t tid);
int threadpool_free(threadpool_t *pool);

//threadpool_create(3,100,100);  
threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size)
{
    int i;
    threadpool_t *pool = NULL;          /* 线程池 结构体 */

    do {
        if((pool = (threadpool_t *)malloc(sizeof(threadpool_t))) == NULL) {  
            printf("malloc threadpool fail");
            break;                                      /*跳出do while*/
        }

        pool->min_thr_num = min_thr_num;
        pool->max_thr_num = max_thr_num;
        pool->busy_thr_num = 0;
        pool->live_thr_num = min_thr_num;               /* 活着的线程数 初值=最小线程数 */
        pool->wait_exit_thr_num = 0;
        pool->queue_size = 0;                           /* 有0个产品 */
        pool->queue_max_size = queue_max_size;          /* 最大任务队列数 */
        pool->queue_front = 0;
        pool->queue_rear = 0;
        pool->shutdown = false;                         /* 不关闭线程池 */

        /* 根据最大线程上限数, 给工作线程数组开辟空间, 并清零 */
        pool->threads = (pthread_t *)malloc(sizeof(pthread_t)*max_thr_num); 
        if (pool->threads == NULL) {
            printf("malloc threads fail");
            break;
        }
        memset(pool->threads, 0, sizeof(pthread_t)*max_thr_num);

        /* 给 任务队列 开辟空间 */
        pool->task_queue = (threadpool_task_t *)malloc(sizeof(threadpool_task_t)*queue_max_size);
        if (pool->task_queue == NULL) {
            printf("malloc task_queue fail");
            break;
        }

        /* 初始化互斥琐、条件变量 */
        if (pthread_mutex_init(&(pool->lock), NULL) != 0
                || pthread_mutex_init(&(pool->thread_counter), NULL) != 0
                || pthread_cond_init(&(pool->queue_not_empty), NULL) != 0
                || pthread_cond_init(&(pool->queue_not_full), NULL) != 0)
        {
            printf("init the lock or cond fail");
            break;
        }

        /* 启动 min_thr_num 个 work thread */
        for (i = 0; i < min_thr_num; i++) {
            pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);   /*pool指向当前线程池*/
            printf("start thread 0x%x...\n", (unsigned int)pool->threads[i]);
        }
        pthread_create(&(pool->adjust_tid), NULL, adjust_thread, (void *)pool);     /* 创建管理者线程 */

        return pool;

    } while (0);

    threadpool_free(pool);      /* 前面代码调用失败时,释放poll存储空间 */

    return NULL;
}

/* 向线程池中 添加一个任务 */
//threadpool_add(thp, process, (void*)&num[i]);   /* 向线程池中添加任务 process: 小写---->大写*/

int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg)
{
    pthread_mutex_lock(&(pool->lock));

    /* ==为真,队列已经满, 调wait阻塞 */
    while ((pool->queue_size == pool->queue_max_size) && (!pool->shutdown)) {
        pthread_cond_wait(&(pool->queue_not_full), &(pool->lock));
    }

    if (pool->shutdown) {
        pthread_cond_broadcast(&(pool->queue_not_empty));
        pthread_mutex_unlock(&(pool->lock));
        return 0;
    }

    /* 清空 工作线程 调用的回调函数 的参数arg */
    if (pool->task_queue[pool->queue_rear].arg != NULL) {
        pool->task_queue[pool->queue_rear].arg = NULL;
    }

    /*添加任务到任务队列里*/
    pool->task_queue[pool->queue_rear].function = function;
    pool->task_queue[pool->queue_rear].arg = arg;
    pool->queue_rear = (pool->queue_rear + 1) % pool->queue_max_size;       /* 队尾指针移动, 模拟环形 */
    pool->queue_size++;

    /*添加完任务后,队列不为空,唤醒线程池中 等待处理任务的线程*/
    pthread_cond_signal(&(pool->queue_not_empty));
    pthread_mutex_unlock(&(pool->lock));

    return 0;
}

/* 线程池中各个工作线程 */
void *threadpool_thread(void *threadpool)
{
    threadpool_t *pool = (threadpool_t *)threadpool;
    threadpool_task_t task;

    while (true) {
        /* Lock must be taken to wait on conditional variable */
        /*刚创建出线程,等待任务队列里有任务,否则阻塞等待任务队列里有任务后再唤醒接收任务*/
        pthread_mutex_lock(&(pool->lock));

        /*queue_size == 0 说明没有任务,调 wait 阻塞在条件变量上, 若有任务,跳过该while*/
        while ((pool->queue_size == 0) && (!pool->shutdown)) {  
            printf("thread 0x%x is waiting\n", (unsigned int)pthread_self());
            pthread_cond_wait(&(pool->queue_not_empty), &(pool->lock));

            /*清除指定数目的空闲线程,如果要结束的线程个数大于0,结束线程*/
            if (pool->wait_exit_thr_num > 0) {
                pool->wait_exit_thr_num--;

                /*如果线程池里线程个数大于最小值时可以结束当前线程*/
                if (pool->live_thr_num > pool->min_thr_num) {
                    printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
                    pool->live_thr_num--;
                    pthread_mutex_unlock(&(pool->lock));

                    pthread_exit(NULL);
                }
            }
        }

        /*如果指定了true,要关闭线程池里的每个线程,自行退出处理---销毁线程池*/
        if (pool->shutdown) {
            pthread_mutex_unlock(&(pool->lock));
            printf("thread 0x%x is exiting\n", (unsigned int)pthread_self());
            pthread_detach(pthread_self());
            pthread_exit(NULL);     /* 线程自行结束 */
        }

        /*从任务队列里获取任务, 是一个出队操作*/
        task.function = pool->task_queue[pool->queue_front].function;
        task.arg = pool->task_queue[pool->queue_front].arg;

        pool->queue_front = (pool->queue_front + 1) % pool->queue_max_size;       /* 出队,模拟环形队列 */
        pool->queue_size--;

        /*通知可以有新的任务添加进来*/
        pthread_cond_broadcast(&(pool->queue_not_full));

        /*任务取出后,立即将 线程池琐 释放*/
        pthread_mutex_unlock(&(pool->lock));

        /*执行任务*/ 
        printf("thread 0x%x start working\n", (unsigned int)pthread_self());
        pthread_mutex_lock(&(pool->thread_counter));                            /*忙状态线程数变量琐*/
        pool->busy_thr_num++;                                                   /*忙状态线程数+1*/
        pthread_mutex_unlock(&(pool->thread_counter));

        (*(task.function))(task.arg);                                           /*执行回调函数任务*/
        //task.function(task.arg);                                              /*执行回调函数任务*/

        /*任务结束处理*/ 
        printf("thread 0x%x end working\n", (unsigned int)pthread_self());
        pthread_mutex_lock(&(pool->thread_counter));
        pool->busy_thr_num--;                                       /*处理掉一个任务,忙状态数线程数-1*/
        pthread_mutex_unlock(&(pool->thread_counter));
    }

    pthread_exit(NULL);
}

/* 管理线程 */
void *adjust_thread(void *threadpool)
{
    int i;
    threadpool_t *pool = (threadpool_t *)threadpool;
    while (!pool->shutdown) {

        sleep(DEFAULT_TIME);                                    /*定时 对线程池管理*/

        pthread_mutex_lock(&(pool->lock));
        int queue_size = pool->queue_size;                      /* 关注 任务数 */
        int live_thr_num = pool->live_thr_num;                  /* 存活 线程数 */
        pthread_mutex_unlock(&(pool->lock));

        pthread_mutex_lock(&(pool->thread_counter));
        int busy_thr_num = pool->busy_thr_num;                  /* 忙着的线程数 */
        pthread_mutex_unlock(&(pool->thread_counter));

        /* 创建新线程 算法: 任务数大于最小线程池个数, 且存活的线程数少于最大线程个数时 如:30>=10 && 40<100*/
        if (queue_size >= MIN_WAIT_TASK_NUM && live_thr_num < pool->max_thr_num) {
            pthread_mutex_lock(&(pool->lock));  
            int add = 0;

            /*一次增加 DEFAULT_THREAD 个线程*/
            for (i = 0; i < pool->max_thr_num && add < DEFAULT_THREAD_VARY
                    && pool->live_thr_num < pool->max_thr_num; i++) {
                if (pool->threads[i] == 0 || !is_thread_alive(pool->threads[i])) {
                    pthread_create(&(pool->threads[i]), NULL, threadpool_thread, (void *)pool);
                    add++;
                    pool->live_thr_num++;
                }
            }

            pthread_mutex_unlock(&(pool->lock));
        }

        /* 销毁多余的空闲线程 算法:忙线程X2 小于 存活的线程数 且 存活的线程数 大于 最小线程数时*/
        if ((busy_thr_num * 2) < live_thr_num  &&  live_thr_num > pool->min_thr_num) {

            /* 一次销毁DEFAULT_THREAD个线程, 隨機10個即可 */
            pthread_mutex_lock(&(pool->lock));
            pool->wait_exit_thr_num = DEFAULT_THREAD_VARY;      /* 要销毁的线程数 设置为10 */
            pthread_mutex_unlock(&(pool->lock));

            for (i = 0; i < DEFAULT_THREAD_VARY; i++) {
                /* 通知处在空闲状态的线程, 他们会自行终止*/
                pthread_cond_signal(&(pool->queue_not_empty));
            }
        }
    }

    return NULL;
}

int threadpool_destroy(threadpool_t *pool)
{
    int i;
    if (pool == NULL) {
        return -1;
    }
    pool->shutdown = true;

    /*先销毁管理线程*/
    pthread_join(pool->adjust_tid, NULL);

    for (i = 0; i < pool->live_thr_num; i++) {
        /*通知所有的空闲线程*/
        pthread_cond_broadcast(&(pool->queue_not_empty));
    }
    for (i = 0; i < pool->live_thr_num; i++) {
        pthread_join(pool->threads[i], NULL);
    }
    threadpool_free(pool);

    return 0;
}

int threadpool_free(threadpool_t *pool)
{
    if (pool == NULL) {
        return -1;
    }

    if (pool->task_queue) {
        free(pool->task_queue);
    }
    if (pool->threads) {
        free(pool->threads);
        pthread_mutex_lock(&(pool->lock));
        pthread_mutex_destroy(&(pool->lock));
        pthread_mutex_lock(&(pool->thread_counter));
        pthread_mutex_destroy(&(pool->thread_counter));
        pthread_cond_destroy(&(pool->queue_not_empty));
        pthread_cond_destroy(&(pool->queue_not_full));
    }
    free(pool);
    pool = NULL;

    return 0;
}

int threadpool_all_threadnum(threadpool_t *pool)
{
    int all_threadnum = -1;                 // 总线程数

    pthread_mutex_lock(&(pool->lock));
    all_threadnum = pool->live_thr_num;     // 存活线程数
    pthread_mutex_unlock(&(pool->lock));

    return all_threadnum;
}

int threadpool_busy_threadnum(threadpool_t *pool)
{
    int busy_threadnum = -1;                // 忙线程数

    pthread_mutex_lock(&(pool->thread_counter));
    busy_threadnum = pool->busy_thr_num;    
    pthread_mutex_unlock(&(pool->thread_counter));

    return busy_threadnum;
}

int is_thread_alive(pthread_t tid)
{
    int kill_rc = pthread_kill(tid, 0);     //发0号信号,测试线程是否存活
    if (kill_rc == ESRCH) {
        return false;
    }
    return true;
}

/*测试*/ 

#if 1

/* 线程池中的线程,模拟处理业务 */
void *process(void *arg)
{
    printf("thread 0x%x working on task %d\n ",(unsigned int)pthread_self(),(int)arg);
    sleep(1);                           //模拟 小---大写
    printf("task %d is end\n",(int)arg);

    return NULL;
}

int main(void)
{
    /*threadpool_t *threadpool_create(int min_thr_num, int max_thr_num, int queue_max_size);*/

    threadpool_t *thp = threadpool_create(3,100,100);   /*创建线程池,池里最小3个线程,最大100,队列最大100*/
    printf("pool inited");

    //int *num = (int *)malloc(sizeof(int)*20);
    int num[20], i;
    for (i = 0; i < 20; i++) {
        num[i] = i;
        printf("add task %d\n",i);
        
        /*int threadpool_add(threadpool_t *pool, void*(*function)(void *arg), void *arg) */

        threadpool_add(thp, process, (void*)&num[i]);   /* 向线程池中添加任务 */
    }

    sleep(10);                                          /* 等子线程完成任务 */
    threadpool_destroy(thp);

    return 0;
}

#endif

二:UDP通信

1.TCP通信和UDP通信各自的优缺点

TCP通信和UDP通信各自的优缺点:


	TCP:	面向连接的,可靠数据包传输。对于不稳定的网络层,采取完全弥补的通信方式。 丢包重传

		优点:
			稳定	
				数据流量稳定、速度稳定、顺序
		缺点:
			传输速度慢。相率低。开销大

		使用场景:数据的完整型要求较高,不追求效率

			  大数据传输、文件传输


	UDP:	无连接的,不可靠的数据报传递。对于不稳定的网络层,采取完全不弥补的通信方式。 默认还原网络状况

		优点:

			传输速度块。相率高。开销小

		缺点:
			不稳定。
				数据流量。速度。顺序


		使用场景:对时效性要求较高场合。稳定性其次

			  游戏、视频会议、视频电话。		腾讯、华为、阿里  ---  应用层数据校验协议,弥补udp的不足

2.UDP实现的C/S模型


UDP实现的 C/S 模型:

	recv()/send() 只能用于 TCP 通信。 替代 read、write

	accpet(); ---- Connect(); ---被舍弃





	server:

		lfd = socket(AF_INET, STREAM, 0);	SOCK_DGRAM --- 报式协议
		bind();
		listen();  --- 可有可无

		while(1){
			read(cfd, buf, sizeof) --- 被替换 --- recvfrom() --- 涵盖accept传出地址结构
				ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,struct sockaddr *src_addr, socklen_t *addrlen);

					sockfd: 套接字
					buf:缓冲区地址
					len:缓冲区大小
					flags: 0

					src_addr:(struct sockaddr *)&addr 传出。 对端地址结构
					addrlen:传入传出。

				返回值: 成功接收数据字节数。 失败:-1 errn。 0: 对端关闭。

			小-- 大
				
			write();--- 被替换 --- sendto()---- connect

				 ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,const struct sockaddr *dest_addr, socklen_t addrlen);

					sockfd: 套接字
					buf:存储数据的缓冲区
					len:数据长度
					flags: 0
					src_addr:(struct sockaddr *)&addr 传入。 目标地址结构
					addrlen:地址结构长度

				返回值:成功写出数据字节数。 失败 -1, errno		
		}

		close();





	client:
		connfd = socket(AF_INET, SOCK_DGRAM, 0);
		sendto(‘服务器的地址结构’, 地址结构大小)
		recvfrom()
		写到屏幕
		close();

server.c

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <ctype.h>

#define SERV_PORT 8000

int main(void)
{
    struct sockaddr_in serv_addr, clie_addr;
    socklen_t clie_addr_len;
    int sockfd;
    char buf[BUFSIZ];
    char str[INET_ADDRSTRLEN];
    int i, n;

    sockfd = socket(AF_INET, SOCK_DGRAM, 0);

    bzero(&serv_addr, sizeof(serv_addr));
    serv_addr.sin_family = AF_INET;
    serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_addr.sin_port = htons(SERV_PORT);

    bind(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr));

    printf("Accepting connections ...\n");
    while (1) {
        clie_addr_len = sizeof(clie_addr);
        n = recvfrom(sockfd, buf, BUFSIZ,0, (struct sockaddr *)&clie_addr, &clie_addr_len);
        if (n == -1)
            perror("recvfrom error");

        printf("received from %s at PORT %d\n",
                inet_ntop(AF_INET, &clie_addr.sin_addr, str, sizeof(str)),
                ntohs(clie_addr.sin_port));

        for (i = 0; i < n; i++)
            buf[i] = toupper(buf[i]);

        n = sendto(sockfd, buf, n, 0, (struct sockaddr *)&clie_addr, sizeof(clie_addr));
        if (n == -1)
            perror("sendto error");
    }

    close(sockfd);

    return 0;
}

client.c

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <ctype.h>

#define SERV_PORT 8000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    int sockfd, n;
    char buf[BUFSIZ];

    sockfd = socket(AF_INET, SOCK_DGRAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);

    //bind(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));        //无效

    while (fgets(buf, BUFSIZ, stdin) != NULL) {
        n = sendto(sockfd, buf, strlen(buf), 0, (struct sockaddr *)&servaddr, sizeof(servaddr));
        if (n == -1)
            perror("sendto error");

        n = recvfrom(sockfd, buf, BUFSIZ, 0, NULL, 0);         //NULL:不关心对端信息
        if (n == -1)
            perror("recvfrom error");

        write(STDOUT_FILENO, buf, n);
    }

    close(sockfd);

    return 0;
}

三:套接字 

1.本地套接字

本地套接字:

	IPC: pipe、fifo、mmap、信号、本地套(domain)--- CS模型


对比网络编程 TCP C/S模型, 注意以下几点:

	1. int socket(int domain, int type, int protocol); 
            domain:AF_INET 											--> AF_UNIX/AF_LOCAL 
            type: SOCK_STREAM/SOCK_DGRAM  都可以
	2. 地址结构:  sockaddr_in 											--> sockaddr_un
		struct sockaddr_in srv_addr; 									--> struct sockaddr_un srv_adrr;
		srv_addr.sin_family = AF_INET;  								--> srv_addr.sun_family = AF_UNIX;

		srv_addr.sin_port = htons(8888);   						    	strcpy(srv_addr.sun_path, "srv.socket")
		srv_addr.sin_addr.s_addr = htonl(INADDR_ANY);					len = offsetof(struct sockaddr_un, sun_path) + strlen("srv.socket");
	
		bind(fd, (struct sockaddr *)&srv_addr, sizeof(srv_addr));  		--> bind(fd, (struct sockaddr *)&srv_addr, len); 


	3. bind()函数调用成功,会创建一个 socket。因此为保证bind成功,通常我们在 bind之前使用 unlink("srv.socket");


	4. 客户端不能依赖 “隐式绑定”。并且应该在通信建立过程中,创建且初始化2个地址结构
		client_addr --> bind()
        server_addr --> connect()

2.本地套 和 网络套对比

							网络套接字						                    									本地套接字
	server:
				lfd = socket(AF_INET, SOCK_STREAM, 0);												lfd = socket(AF_UNIX, SOCK_STREAM, 0);
		
				bzero() ---- struct sockaddr_in serv_addr;											bzero() ---- struct sockaddr_un serv_addr, clie_addr;

				serv_addr.sin_family = AF_INET;														serv_addr.sun_family = AF_UNIX;						
				serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);										strcpy(serv_addr.sun_path, "套接字文件名")
				serv_addr.sin_port = htons(8888);													
																									len = offsetof(sockaddr_un, sun_path) + strlen();
																									
																									unlink("套接字文件名");								
				bind(lfd, (struct sockaddr *)&serv_addr, sizeof());									bind(lfd, (struct sockaddr *)&serv_addr, len);  创建新文件

				Listen(lfd, 128);																	Listen(lfd, 128);

				cfd = Accept(lfd, ()&clie_addr, &len);												cfd = Accept(lfd, ()&clie_addr, &len);  




	client:		
				lfd = socket(AF_INET, SOCK_STREAM, 0);												lfd = socket(AF_UNIX, SOCK_STREAM, 0);

				"隐式绑定 IP+port"																	bzero() ---- struct sockaddr_un clie_addr;
																										clie_addr.sun_family = AF_UNIX;
																										strcpy(clie_addr.sun_path, "client套接字文件名")
																										len = offsetof(sockaddr_un, sun_path) + strlen();
																									unlink( "client套接字文件名");
																									bind(lfd, (struct sockaddr *)&clie_addr, len);

				bzero() ---- struct sockaddr_in serv_addr;											bzero() ---- struct sockaddr_un serv_addr;

				serv_addr.sin_family = AF_INET;														serv_addr.sun_family = AF_UNIX;
																	
				inet_pton(AF_INT, "服务器IP", &sin_addr.s_addr)										
																									strcpy(serv_addr.sun_path, "server套接字文件名")	
				
				serv_addr.sin_port = htons("服务器端口");											
																									len = offsetof(sockaddr_un, sun_path) + strlen();				

				connect(lfd, &serv_addr, sizeof());													connect(lfd, &serv_addr, len);

server.c

#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <sys/un.h>
#include <stddef.h>

#include "wrap.h"

#define SERV_ADDR  "serv.socket"

int main(void)
{
    int lfd, cfd, len, size, i;
    struct sockaddr_un servaddr, cliaddr;
    char buf[4096];

    lfd = Socket(AF_UNIX, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sun_family = AF_UNIX;
    strcpy(servaddr.sun_path, SERV_ADDR);

    len = offsetof(struct sockaddr_un, sun_path) + strlen(servaddr.sun_path);     /* servaddr total len */

    unlink(SERV_ADDR);                                                            /* 确保bind之前serv.sock文件不存在,bind会创建该文件 */
    Bind(lfd, (struct sockaddr *)&servaddr, len);                                 /* 参3不能是sizeof(servaddr) */

    Listen(lfd, 20);

    printf("Accept ...\n");
    while (1) {
        len = sizeof(cliaddr);  //AF_UNIX大小+108B

        cfd = Accept(lfd, (struct sockaddr *)&cliaddr, (socklen_t *)&len);

        len -= offsetof(struct sockaddr_un, sun_path);                           /* 得到文件名的长度 */
        cliaddr.sun_path[len] = '\0';                                            /* 确保打印时,没有乱码出现 */

        printf("client bind filename %s\n", cliaddr.sun_path);

        while ((size = read(cfd, buf, sizeof(buf))) > 0) {
            for (i = 0; i < size; i++)
                buf[i] = toupper(buf[i]);
            write(cfd, buf, size);
        }
        close(cfd);
    }
    close(lfd);

    return 0;
}

client.c

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>         
#include <sys/socket.h>
#include <strings.h>
#include <string.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <sys/un.h>
#include <stddef.h>

#include "wrap.h"

#define SERV_ADDR "serv.socket"
#define CLIE_ADDR "clie.socket"

int main(void)
{
    int  cfd, len;
    struct sockaddr_un servaddr, cliaddr;
    char buf[4096];

    cfd = Socket(AF_UNIX, SOCK_STREAM, 0);

    bzero(&cliaddr, sizeof(cliaddr));
    cliaddr.sun_family = AF_UNIX;
    strcpy(cliaddr.sun_path,CLIE_ADDR);

    len = offsetof(struct sockaddr_un, sun_path) + strlen(cliaddr.sun_path);     /* 计算客户端地址结构有效长度 */

    unlink(CLIE_ADDR);
    Bind(cfd, (struct sockaddr *)&cliaddr, len);                                 /* 客户端也需要bind, 不能依赖自动绑定*/

    
    bzero(&servaddr, sizeof(servaddr));                                          /* 构造server 地址 */
    servaddr.sun_family = AF_UNIX;
    strcpy(servaddr.sun_path, SERV_ADDR);

    len = offsetof(struct sockaddr_un, sun_path) + strlen(servaddr.sun_path);   /* 计算服务器端地址结构有效长度 */

    Connect(cfd, (struct sockaddr *)&servaddr, len);

    while (fgets(buf, sizeof(buf), stdin) != NULL) {
        write(cfd, buf, strlen(buf));
        len = read(cfd, buf, sizeof(buf));
        write(STDOUT_FILENO, buf, len);
    }

    close(cfd);

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/924488.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用CSS实现一个3D旋转效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 3D效果实现⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域…

有线耳机插入电脑没声音

有线耳机插入电脑没声音 首先确保耳机和电脑都没问题&#xff0c;那就有可能是声音输出设备设置错误 右击任务栏的声音图标-打开声音设置-选择输出设备。

长时间序列的25米全球sar卫星镶嵌数据

数据简介 1992年JAXA&#xff08;Japan Aerospace Exploration Agency&#xff0c;日本宇宙航空研究开发机构&#xff09;发射了一颗JERS-1卫星&#xff0c;该卫星携带有18*24m分辨率的SAR传感器。随后&#xff0c;JAXA又在2006年和2014年分别发射了带有SAR传感器的alos卫星和…

拓世科技集团 | “书剑人生”李步云学术思想研讨会暨李步云先生九十华诞志庆

2023年&#xff0c;中国改革开放迎来了45周年&#xff0c;改革春风浩荡&#xff0c;席卷神州大地&#xff0c;45年间&#xff0c;中国特色社会主义伟大事业大步迈入崭新境界&#xff0c;一路上结出了饶为丰硕的果实。中华民族在这45年间的砥砺前行&#xff0c;不仅使中国的经济…

Clion 找不到头文件,无法DEBUG,无法进入断点,断点灰了

文章目录 1. 找不到远程toolchain的头文件2.gdb未安装或版本不对无法debug3.远程debug断点灰了 1. 找不到远程toolchain的头文件 ①检查cmake头文件引入指令include_directories(SYSTEM "/usr/lib/jvm/jdk-17-oracle-x64/include") ②菜单栏Tools->Resyinc with r…

运放的分类、运放的参数

一、运放的分类 运放按功能分为通用运放与专用运放&#xff08;高速运放、精密运放、低IB运放等&#xff09;。 1.1通用运放 除廉价外&#xff0c;没有任何最优指标的运放。 例&#xff1a;uA741&#xff0c;LM324&#xff0c;TL06X&#xff0c;TL07X、TL08X等 国外知名运放…

科技赋能,教育革新——大步迈向体育强国梦

在 "全民健身"、"体育强国建设"战略的推进下&#xff0c;体育考试成绩被纳入重要升学考试且分值不断提高&#xff0c;体育科目的地位逐步上升到前所未有的高度&#xff0c;在此趋势下&#xff0c;体育教学正演变出更多元化、个性化的需求。然而现实中却面临…

ubuntu20.04 编译安装运行emqx

文章目录 安装依赖编译运行登录dashboard压力测试 安装依赖 Erlang/OTP OTP 24 或 25 版本 apt-get install libncurses5-dev sudo apt-get install erlang如果安装的erlang版本小于24的话&#xff0c;可以使用如下方法自行编译erlang 1.源码获取 wget https://github.com/erla…

ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值)

1.实验目标&#xff1a;采集温湿度传感器值&#xff1b; 2.分析框图&#xff08;模拟IIC控制器&#xff09;&#xff1b; 3.代码&#xff1b; ---iic.h封装时序协议头文件--- #ifndef __IIC_H__ #define __IIC_H__ #include "stm32mp1xx_gpio.h" #include "st…

bash: conda: command not found

问题描述&#xff1a; 在Pycharm上用SSH远程连接到服务器&#xff0c;打开Terminal准备查看用 conda 创建的虚拟环境时&#xff0c;却发现调用 conda 指令时出现以下报错&#xff1a; -bash: conda: command not found如果使用Xshell 利用端口号直接连接该 docker 容器&#…

学无止境·运维高阶⑦Docker进阶一(构建个人网盘)

Docker进阶一 1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。1.1 拉取镜像1.2 创建容器1.3登录查看 1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 1.1 拉取镜像 [rootnode3 ~]# docker pull mysql:5.6 [rootnode3 ~]# docker pull own…

基于jeecg-boot的flowable流程跳转功能实现

更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; https://gitee.com/nbacheng/nbcio-boot 前端代码&#xff1a;https://gitee.com/nbacheng/nbcio-vue.git 在线演示&#xff08;包括H5&#xff09; &#xff1a; http://122.227.135.243:9888 今天我…

云计算在线实训系统建设方案

一、 人工智能与云计算系统概述 人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是一种模拟人类智能的科学和工程&#xff0c;通过使用计算机系统来模拟、扩展和增强人类的智能能力。人工智能涉及多个领域&#xff0c;包括机器学习、深度学习、自然…

零基础如何使用IDEA启动前后端分离中的前端项目(Vue)?

一、在IDEA中配置vue插件 点击File-->Settings-->Plugins-->搜索vue.js插件进行安装&#xff0c;下面的图中我已经安装好了 二、搭建node.js环境 安装node.js 可以去官网下载&#xff1a;安装过程就很简单&#xff0c;直接下一步就行 测试是否安装成功&#xff1a;要…

HCIP-OpenStack组件之neutron

neutron&#xff08;ovs、ovn&#xff09; OVS OVS(Open vSwitch)是虚拟交换机&#xff0c;遵循SDN(Software Defined Network&#xff0c;软件定义网络)架构来管理的。 OVS介绍参考&#xff1a;https://mp.weixin.qq.com/s?__bizMzAwMDQyOTcwOA&mid2247485088&idx1…

基于PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化

我国高分辨率对地观测系统重大专项已全面启动&#xff0c;高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成&#xff0c;将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB&#xff0c;遥感大数据时…

【面试题】MVC、MVP与MVVM模式是什么?

MVC模式 MVC是应用最广泛的软件架构之一&#xff0c;一般MVC分为&#xff1a; Model&#xff08; 模型 &#xff09;、Controller&#xff08; 控制器 &#xff09;、View&#xff08; 视图 &#xff09;。 这主要是基于分层的目的&#xff0c;让彼此的职责分开。View 一般…

R语言快速生成三线表(1)

R语言的优势在于批量处理&#xff0c;常使用到循环和函数&#xff0c;三线表是科研文章中必备的内容。利用函数实现自动判断数据类型和计算。使用R包&#xff08;table1&#xff09;。 # 创建连续性变量 continuous_var1 <- c(1.2, 2.5, 3.7, 4.8, 5.9) continuous_var2 &l…

Kali 软件管理

kali 更新 1. 查看发行版本 ┌──(root㉿kali)-[~] └─# lsb_release -a No LSB modules are available. Distributor ID: Kali Description: Kali GNU/Linux Rolling Release: 2023.2 Codename: kali-rolling2. 查看内核版本 ┌──(root㉿kali)-[~] └─…

【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程

前情回顾&#xff1a;【IMX6ULL驱动开发学习】09.Linux之I2C框架简介和驱动程序模板_阿龙还在写代码的博客-CSDN博客 目录 一、修改设备树&#xff08;设备树用来指定引脚资源&#xff09; 二、编写驱动 2.1 i2c_drv_read 2.2 i2c_drv_write 2.3 完整驱动程序 三、上机测…