基于乌燕鸥算法优化的BP神经网络(预测应用) - 附代码

news2024/11/23 23:54:49

基于乌燕鸥算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于乌燕鸥算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.乌燕鸥优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 乌燕鸥算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用乌燕鸥算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.乌燕鸥优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 乌燕鸥算法应用

乌燕鸥算法原理请参考:https://blog.csdn.net/u011835903/article/details/111936344

乌燕鸥算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从乌燕鸥算法的收敛曲线可以看到,整体误差是不断下降的,说明乌燕鸥算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/923438.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字的画笔:数据可视化的魅力与实用性

数据可视化是一种强大的工具,用于将复杂的数据和信息以图形化的方式呈现,以便人们更容易理解、分析和发现其中的模式和趋势。通过图表、图形和其他可视元素,数据可视化可以帮助我们将抽象的数字转化为有意义的视觉呈现,从而提升了…

QT6安装完成后,再安装低版本的MinGW或其他组件方式

首先进入点击安装的uinstall Qt 并不是真的卸载 通过下面几步 1,首先登录自己账户 2,然后进入欢迎中,点击“添加和移除组件” 3,然后检索自己需要的安装内容

MDTA模块(Restormer)

From a layer normalized tensor Y ∈ R H ^ W ^ C ^ \mathbf{Y} \in \mathbb{R}^{\hat{H} \times \hat{W} \times \hat{C}} Y∈RH^W^C^, our MDTA first generates query ( Q ) (\mathbf{Q}) (Q), key ( K ) (\mathbf{K}) (K) and value ( V ) (\mathbf{V}) (V) project…

前端基础踩坑记录

前言:在做vue项目时,有时代码没有报错,但运行时却各种问题,没有报错排查起来就很费劲,本人感悟:写前端,需要好的眼神!!!谨以此博客记录下自己的踩坑点。 一、…

vue学习之hello world

依赖引入 <script src"https://unpkg.com/vue2.6.10/dist/vue.js"></script>Hello world 实现 <html><head><style></style></head><body><script src"https://unpkg.com/vue2.6.10/dist/vue.js">…

日志搞不定?手把手教你如何使用Log4j2

系列文章目录 从零开始&#xff0c;手把手教你搭建Spring Boot后台工程并说明 Spring框架与SpringBoot的关联与区别 SpringBean生成流程详解 —— 由浅入深(附超精细流程图) Spring监听器用法与原理详解 Spring事务畅谈 —— 由浅入深彻底弄懂 Transactional注解 面试热点详解…

Keepalived+Lvs(dr)调度器主备配置小实验

目录 前言 一、实验拓扑图 二、配置LVS&#xff08;dr&#xff09;模式 三、配置调配器热备 四、测试 总结 前言 Keepalived和LVS&#xff08;Linux Virtual Server&#xff09;是两个常用的开源软件&#xff0c;通常结合使用以提供高可用性和负载均衡的解决方案。 Keepalive…

Mybatis查询一条数据

上一篇我们介绍了在pom文件中引入mybatis依赖&#xff0c;配置了mybatis配置文件&#xff0c;通过读取配置文件创建了会话工厂&#xff0c;使用会话工厂创建会话获取连接对象读取到了数据库的基本信息。 如果您需要对上面的内容进行了解&#xff0c;可以参考Mybatis引入与使用…

【指标】指标公式大全,款款经典(建议珍藏)!-神奇指标网

三、指标源码&#xff1a; 1、连续三天高开高走的选股公式 count(o〉ref(c,1&#xff09;andc>o&#xff0c;3)3&#xff1b; 2、连续3天每天的最低价都比前一天高 count&#xff08;l〉ref(c,1&#xff09;,3)3&#xff1b; 3、周量缩小50%或40&#xff05;或n&#x…

帮助中心实践方式:及时提示反馈,引导自助解决

为了及时高效的帮助用户解决当下实际问题&#xff0c;很多产品都会专门设置一个独立的产品帮助中心&#xff0c;满足客户需要获取解决方案的需要&#xff0c;减轻人工客服端压力。 帮助中心实践方式 常规的帮助中心文档和用户群&#xff0c;解决的是用户遇到问题或者疑问时&am…

Zebec Protocol:模块化 L3 链 Nautilus Chain,深度拓展流支付体系

过去三十年间&#xff0c;全球金融科技领域已经成熟并迅速增长&#xff0c;主要归功于不同的数字支付媒介的出现。然而&#xff0c;由于交易延迟、高额转账费用等问题愈发突出&#xff0c;更高效、更安全、更易访问的支付系统成为新的刚需。 此前&#xff0c;咨询巨头麦肯锡的一…

基于纵横交叉算法优化的BP神经网络(预测应用) - 附代码

基于纵横交叉算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于纵横交叉算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.纵横交叉优化BP神经网络2.1 BP神经网络参数设置2.2 纵横交叉算法应用 4.测试结果&#xff1a;5…

基于grpc从零开始搭建一个准生产分布式应用(5) - MapStruct传输对象转换

分层设计中上下游间接口调用时&#xff0c;如果接口方法参数很多最好的方式是包装一个对象。但每层都有自己专用的对象&#xff0c;比如vo、bo、po等。在对象转换时需要写大量的getter和setter方法或是用deepCopy简化代码&#xff0c;但无论哪种都少不了大量的代码。 这里我们会…

linux+c+qt杂记

虚拟机网络选择&#xff1b; 桥接模式&#xff1a;设置window宿主机的IP/dns,把虚拟机设置为桥接即可。 切换到终端&#xff1a;我的是 ctrlaltFnF1&#xff1f; 问题解决&#xff1a; Ubuntu系统下载&#xff08;清华大学开源软件镜像站&#xff09;&#xff08;ubuntu-20.…

使用easyExcel导入导出Date类型的转换问题

起因&#xff1a;在业务需求上需要将Excel表中的日期导入&#xff0c;存储到数据库中&#xff0c;但是entity中的日期类型使用Date来接收&#xff0c;这样导致时间精确到秒。这时&#xff0c;即使使用DateTimeFormat("yyyy-MM-dd")也无法成功转换&#xff0c;会报如下…

第4篇:vscode+platformio搭建esp32 arduino开发环境

第1篇:Arduino与ESP32开发板的安装方法 第2篇:ESP32 helloword第一个程序示范点亮板载LED 第3篇:vscode搭建esp32 arduino开发环境 1.配置默认安装路径&#xff0c;安装到D盘。 打开环境变量&#xff0c;点击新建 输入变量名PLATFORMIO_CORE_DIR与路径&#xff1a;D:\PLATF…

javafx应用程序线程异常Exception in thread “JavaFx Application Thread“

前几天用javafx做小桌面应用程序出现了一个问题&#xff1a; 反复检查&#xff0c;最终确定报错的原因是UI刷新频率过快导致的 javafx提供了Platform.runLater用于解决该问题&#xff1a; Platform.runLater(new Runnable() {Overridepublic void run(){//用Platform.runLate…

linux上传代码到gitee

一、在gitee创建一个仓库 1.创建仓库 2.获取仓库地址 二、克隆仓库文件到linux中 1.查看Linux中是否安装git&#xff1a;git --version 如果没有&#xff0c;在root下使用指令 yum install -y git 安装。 2.使用 git clone 仓库地址&#xff0c;克隆仓库文件到linux中 三、文…

常见API架构介绍

两个服务间进行接口调用&#xff0c;通过调用API的形式进行交互&#xff0c;这是常见CS架构实现的模式&#xff0c;客户端通过调用API即可使用服务端提供的服务。相较于SPI这种模式&#xff0c;就是服务端只规定服务接口&#xff0c;但具体实现交由第三方或者自身来实现&#x…

如何利用SFTP如何实现更安全的远程文件传输 ——【内网穿透】

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 1. 安装openSSH1.1 安装SSH1.2 启动ssh 2. 安装cpolar2.1 配置termux服务 3. 远程SFTP连接配置3.1 查看生成的随机公…