【LINUX协议栈】netfilter之连接跟踪机制

news2025/1/11 8:54:02

1、什么是链接跟踪

连接跟踪,顾名思义,就是跟踪(并记录)连接的状态。一般conntrack用来指代“Connection Tracking”,即连接跟踪,是建立在 Netfilter框架之上的重要功能之一。

2、为什么需要链路跟踪

  • 因为它是状态防火墙和NAT的实现基础。

3、内核中的链接跟踪

  • 用于实现连接跟踪入口的hook函数以较高的优先级分别被注册到了netfitler的NF_IP_PRE_ROUTING和NF_IP_LOCAL_OUT两个hook点上;
  • 用于实现连接跟踪出口的hook函数以非常低的优先级分别被注册到了netfilter的NF_IP_LOCAL_IN和NF_IP_POST_ROUTING两个hook点上。

3.1、连接跟踪的报文走向及hook注册

  • 在连接跟踪模块中,一个数据包无外乎三种流程可以走:
    1、发送给本机的数据包
    在这里插入图片描述
    流程:PRE_ROUTING----LOCAL_IN—本地进程
    2、需要本机转发的数据包
    在这里插入图片描述
    流程:PRE_ROUTING—FORWARD—POST_ROUTING—外出
    3、从本机发出的数据包
    在这里插入图片描述
    流程:LOCAL_OUT----POST_ROUTING—外出
static struct nf_hook_ops ipv4_defrag_ops[] = {
	{
		/*对数据进行分片检测*/
		.hook		= ipv4_conntrack_defrag,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_PRE_ROUTING,
		.priority	= NF_IP_PRI_CONNTRACK_DEFRAG,
	},
	{
		.hook           = ipv4_conntrack_defrag,
		.pf             = NFPROTO_IPV4,
		.hooknum        = NF_INET_LOCAL_OUT,
		.priority       = NF_IP_PRI_CONNTRACK_DEFRAG,
	},
};
static struct nf_hook_ops ipv4_conntrack_ops[] __read_mostly = {
	{
		/*刚进入netfilter框架在第一个PREROUTEING链上建立连接跟踪*/
		.hook		= ipv4_conntrack_in,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_PRE_ROUTING,
		.priority	= NF_IP_PRI_CONNTRACK,
	},
	{
		/*本机产生的数据包在OUT链上建立连接跟踪*/
		.hook		= ipv4_conntrack_local,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_LOCAL_OUT,
		.priority	= NF_IP_PRI_CONNTRACK,
	},
	{
		.hook		= ipv4_helper,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_POST_ROUTING,
		.priority	= NF_IP_PRI_CONNTRACK_HELPER,
	},
	{
		/*数据包最后出去在POSTROUTING链上连接跟踪确认*/
		.hook		= ipv4_confirm,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_POST_ROUTING,
		.priority	= NF_IP_PRI_CONNTRACK_CONFIRM,
	},
	{
		.hook		= ipv4_helper,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_LOCAL_IN,
		.priority	= NF_IP_PRI_CONNTRACK_HELPER,
	},
	{
		/*在LOCAL_IN链进入本机的数据连接跟踪确认*/
		.hook		= ipv4_confirm,
		.pf		= NFPROTO_IPV4,
		.hooknum	= NF_INET_LOCAL_IN,
		.priority	= NF_IP_PRI_CONNTRACK_CONFIRM,
	},
};

3.2、连接跟踪的状态

enum ip_conntrack_info {
	/* Part of an established connection (either direction). */
	IP_CT_ESTABLISHED, //Packet是一个已建连接的一部分,在其初始方向

	/* Like NEW, but related to an existing connection, or ICMP error
	   (in either direction). */
	IP_CT_RELATED,  //Packet属于一个已建连接的相关连接,在其初始方向。

	/* Started a new connection to track (only
           IP_CT_DIR_ORIGINAL); may be a retransmission. */
	IP_CT_NEW,  //

	/* >= this indicates reply direction */
	IP_CT_IS_REPLY,

	IP_CT_ESTABLISHED_REPLY = IP_CT_ESTABLISHED + IP_CT_IS_REPLY,  //Packet是一个已建连接的一部分,在其响应方向
	IP_CT_RELATED_REPLY = IP_CT_RELATED + IP_CT_IS_REPLY,  //Packet属于一个已建连接的相关连接,在其响应方向。
	IP_CT_NEW_REPLY = IP_CT_NEW + IP_CT_IS_REPLY,	
	/* Number of distinct IP_CT types (no NEW in reply dirn). */
	IP_CT_NUMBER = IP_CT_IS_REPLY * 2 - 1
};

3.3、链路跟踪的入口与出口

连接跟踪分入口和出口两个点。

  • 入口时创建连接跟踪记录
    ipv4_conntrack_defragipv4_conntrack_inipv4_conntrack_local
    整个入口的流程简述如下:对于每个到来的skb,连接跟踪都将其转换成一个tuple结构,然后用该tuple去查连接跟踪表。如果该类型的数据包没有被跟踪过,将为其在连接跟踪的hash表里建立一个连接记录项,对于已经跟踪过了的数据包则不用此操作。紧接着,调用该报文所属协议的连接跟踪模块的所提供的packet()回调函数,最后根据状态改变连接跟踪记录的状态。
  • 出口时将该记录加入到连接跟踪表中
    ipv4_helperipv4_confirm
    整个出口的流程简述如下:对于每个即将离开Netfilter框架的数据包,如果用于处理该协议类型报文的连接跟踪模块提供了helper函数,那么该数据包首先会被helper函数处理,然后才去判断,如果该报文已经被跟踪过了,那么其所属连接的状态,决定该包是该被丢弃、或是返回协议栈继续传输,又或者将其加入到连接跟踪表中

3.4、连接跟踪的关键函数

3.4.1、ipv4_conntrack_defrag

这个函数主要是检测是否被分片,如果被分片就重组。

static unsigned int ipv4_conntrack_defrag(void *priv,
					  struct sk_buff *skb,
					  const struct nf_hook_state *state)
{
	struct sock *sk = skb->sk;

	if (sk && sk_fullsock(sk) && (sk->sk_family == PF_INET) &&
	    inet_sk(sk)->nodefrag)
		return NF_ACCEPT;

#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#if !IS_ENABLED(CONFIG_NF_NAT)
	/*该数据包的连接跟踪选项已经建立就直接返回*/
	if (skb->nfct && !nf_ct_is_template((struct nf_conn *)skb->nfct))
		return NF_ACCEPT;
#endif
#endif
	/* Gather fragments. */
	if (ip_is_fragment(ip_hdr(skb))) {
		enum ip_defrag_users user =
			nf_ct_defrag_user(state->hook, skb);
		//数据包分片
		if (nf_ct_ipv4_gather_frags(state->net, skb, user))
			return NF_STOLEN;
	}
	return NF_ACCEPT;
}

3.4.2、 ipv4_conntrack_in

这个函数主要是主要是初始化一条链接、更新链接状态

static unsigned int ipv4_conntrack_in(void *priv,
				      struct sk_buff *skb,
				      const struct nf_hook_state *state)
{
	return nf_conntrack_in(state->net, PF_INET, state->hook, skb);
}

3.4.2.1、nf_conntrack_in

unsigned int nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
		struct sk_buff *skb)
{
	struct nf_conn *ct, *tmpl = NULL;
	enum ip_conntrack_info ctinfo;
	struct nf_conntrack_l3proto *l3proto;
	struct nf_conntrack_l4proto *l4proto;
	unsigned int *timeouts;
	unsigned int dataoff;
	u_int8_t protonum;
	int set_reply = 0;
	int ret;
	/*nfct不为NULL说明已经建立连接跟踪选项*/
	if (skb->nfct) {
		/* Previously seen (loopback or untracked)?  Ignore. */
		tmpl = (struct nf_conn *)skb->nfct;
		if (!nf_ct_is_template(tmpl)) {
			NF_CT_STAT_INC_ATOMIC(net, ignore);
			return NF_ACCEPT;
		}
		skb->nfct = NULL;
	}

	/* rcu_read_lock()ed by nf_hook_slow */
	/*根据三层协议号在nf_ct_l3protos数组中寻找三层struct nf_conntrack_l3proto实例*/
	l3proto = __nf_ct_l3proto_find(pf);
	/*获取四层协议号*/
	ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
				   &dataoff, &protonum);
	if (ret <= 0) {
		pr_debug("not prepared to track yet or error occurred\n");
		NF_CT_STAT_INC_ATOMIC(net, error);
		NF_CT_STAT_INC_ATOMIC(net, invalid);
		ret = -ret;
		goto out;
	}
	/*根据三层协议号、四层协议号获取四层struct nf_conntrack_l4proto实例*/
	l4proto = __nf_ct_l4proto_find(pf, protonum);

	/* It may be an special packet, error, unclean...
	 * inverse of the return code tells to the netfilter
	 * core what to do with the packet. */
	if (l4proto->error != NULL) {
		ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
				     pf, hooknum);
		if (ret <= 0) {
			NF_CT_STAT_INC_ATOMIC(net, error);
			NF_CT_STAT_INC_ATOMIC(net, invalid);
			ret = -ret;
			goto out;
		}
		/* ICMP[v6] protocol trackers may assign one conntrack. */
		if (skb->nfct)
			goto out;
	}
	/*从tuple hash表中获取struct nf_conn结构体和reply方向数据标志*/
	ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
			       l3proto, l4proto, &set_reply, &ctinfo);
	if (!ct) {
		/* Not valid part of a connection */
		NF_CT_STAT_INC_ATOMIC(net, invalid);
		ret = NF_ACCEPT;
		goto out;
	}

	if (IS_ERR(ct)) {
		/* Too stressed to deal. */
		NF_CT_STAT_INC_ATOMIC(net, drop);
		ret = NF_DROP;
		goto out;
	}

	NF_CT_ASSERT(skb->nfct);

	/* Decide what timeout policy we want to apply to this flow. */
	timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
	/*填充tuple结构中四层的元素*/
	ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
	if (ret <= 0) {
		/* Invalid: inverse of the return code tells
		 * the netfilter core what to do */
		pr_debug("nf_conntrack_in: Can't track with proto module\n");
		nf_conntrack_put(skb->nfct);
		skb->nfct = NULL;
		NF_CT_STAT_INC_ATOMIC(net, invalid);
		if (ret == -NF_DROP)
			NF_CT_STAT_INC_ATOMIC(net, drop);
		ret = -ret;
		goto out;
	}
	/*当在reply方向收到数据包后设置链接状态为IPS_SEEN_REPLY_BIT
	状态改变调用nf_conntrack_event_cache ,由nfnetlink模块处理状态改变的事件*/
	if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
		nf_conntrack_event_cache(IPCT_REPLY, ct);
out:
	if (tmpl) {
		/* Special case: we have to repeat this hook, assign the
		 * template again to this packet. We assume that this packet
		 * has no conntrack assigned. This is used by nf_ct_tcp. */
		if (ret == NF_REPEAT)
			skb->nfct = (struct nf_conntrack *)tmpl;
		else
			nf_ct_put(tmpl);
	}

	return ret;
}

3.4.2.2、nf_ct_is_template

判断不是IPS_TEMPLATE_BIT

static inline int nf_ct_is_template(const struct nf_conn *ct)
{
	return test_bit(IPS_TEMPLATE_BIT, &ct->status);
}

3.4.2.3、resolve_normal_ct

这个函数主要是判断连接跟踪是否存在,不存在就去创建。然后设置连接的状态

/* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
static inline struct nf_conn * resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
		  struct sk_buff *skb,
		  unsigned int dataoff,
		  u_int16_t l3num,
		  u_int8_t protonum,
		  struct nf_conntrack_l3proto *l3proto,
		  struct nf_conntrack_l4proto *l4proto,
		  int *set_reply,
		  enum ip_conntrack_info *ctinfo)
{
	const struct nf_conntrack_zone *zone;
	struct nf_conntrack_tuple tuple;
	struct nf_conntrack_tuple_hash *h;
	struct nf_conntrack_zone tmp;
	struct nf_conn *ct;
	u32 hash;
	//获取tuple
	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
			     dataoff, l3num, protonum, net, &tuple, l3proto,
			     l4proto)) {
		pr_debug("resolve_normal_ct: Can't get tuple\n");
		return NULL;
	}

	/* look for tuple match */
	//hash表中查找tuple
	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
	hash = hash_conntrack_raw(&tuple);
	h = __nf_conntrack_find_get(net, zone, &tuple, hash);
	if (!h) {
		//没有找到就新建一个tuple
		h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
				   skb, dataoff, hash);
		if (!h)
			return NULL;
		if (IS_ERR(h))
			return (void *)h;
	}
	//根据tuple得到连接跟踪结构体nf_conn
	//根据nf_conntrack_tuple_hash{}结构体中tuplehash[IP_CT_DIR_ORIGINAL]成员的地址,反过来计算其所在的结构体nf_conn{}对象的首地址
	ct = nf_ct_tuplehash_to_ctrack(h);

	/* It exists; we have (non-exclusive) reference. */
	/*数据包是reply方向表名连接双向已经建立
	设置数据包的状态为IP_CT_ESTABLISHED + IP_CT_IS_REPLY*/
	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
		*ctinfo = IP_CT_ESTABLISHED_REPLY;
		/* Please set reply bit if this packet OK */
		*set_reply = 1;
	} else {
		/* Once we've had two way comms, always ESTABLISHED. */
		/*数据包是orig方向,以及收到reply方向的数据则设置数据包状态为IP_CT_ESTABLISHED*/
		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
			pr_debug("nf_conntrack_in:normal packet for %pK\n", ct);
			//两个方向都已经建立了
			*ctinfo = IP_CT_ESTABLISHED;
		/*还没有收到reply方向数据包,是一个期望连接设置数据包状态为IP_CT_RELATED*/
		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
			pr_debug("nf_conntrack_in: related packet for %pK\n",
				 ct);
			*ctinfo = IP_CT_RELATED;
		} else {
			pr_debug("nf_conntrack_in: new packet for %pK\n", ct);
			/*没有收到relply方向的数据包,而且不是期望连接设置数据包状态为IP_CT_NEW*/
			*ctinfo = IP_CT_NEW;
		}
		*set_reply = 0;
	}
	skb->nfct = &ct->ct_general;
	skb->nfctinfo = *ctinfo;
	return ct;
}

3.4.2.4、nf_ct_get_tuple

主要根据协议号调用pkt_to_tuple生成一个tuple,tcp/udp协议就是生成五元组(源ip、目的ip、源端口、目的端口、协议号),icmp协议就是(id、code、type)

bool nf_ct_get_tuple(const struct sk_buff *skb,
		unsigned int nhoff,
		unsigned int dataoff,
		u_int16_t l3num,
		u_int8_t protonum,
		struct net *net,
		struct nf_conntrack_tuple *tuple,
		const struct nf_conntrack_l3proto *l3proto,
		const struct nf_conntrack_l4proto *l4proto)
{
	memset(tuple, 0, sizeof(*tuple));

	tuple->src.l3num = l3num;
	/*三层协议从skb中获取源ip、目的ip保存到tuple*/
	if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
		return false;

	tuple->dst.protonum = protonum;
	/*方向orig*/
	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
	/*四层协议tcp/udp后去源端口、目的端口保存到tuple 如果是icmp就获取type、code、id*/
	return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
}

3.4.2.5、__nf_conntrack_find_get

static struct nf_conntrack_tuple_hash * 
__nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
			const struct nf_conntrack_tuple *tuple, u32 hash)
{
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct;

	rcu_read_lock();
begin:
	/*查找tuple*/
	h = ____nf_conntrack_find(net, zone, tuple, hash);
	if (h) {
		ct = nf_ct_tuplehash_to_ctrack(h);
		if (unlikely(nf_ct_is_dying(ct) ||
			     !atomic_inc_not_zero(&ct->ct_general.use)))
			h = NULL;
		else {
			if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
				nf_ct_put(ct);
				goto begin;
			}
		}
	}
	rcu_read_unlock();

	return h;
}

3.4.2.6、____nf_conntrack_find

static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
		      const struct nf_conntrack_tuple *tuple, u32 hash)
{
	struct nf_conntrack_tuple_hash *h;
	struct hlist_nulls_node *n;
	unsigned int bucket = hash_bucket(hash, net);

	/* Disable BHs the entire time since we normally need to disable them
	 * at least once for the stats anyway.
	 */
	local_bh_disable();
begin:
	/*遍历链表查找tuple*/
	hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
		if (nf_ct_key_equal(h, tuple, zone)) {
			NF_CT_STAT_INC(net, found);
			local_bh_enable();
			return h;
		}
		NF_CT_STAT_INC(net, searched);
	}
	/*
	 * if the nulls value we got at the end of this lookup is
	 * not the expected one, we must restart lookup.
	 * We probably met an item that was moved to another chain.
	 */
	if (get_nulls_value(n) != bucket) {
		NF_CT_STAT_INC(net, search_restart);
		goto begin;
	}
	local_bh_enable();

	return NULL;
}

3.4.2.7、init_conntrack

static struct nf_conntrack_tuple_hash *
init_conntrack(struct net *net, struct nf_conn *tmpl,
	       const struct nf_conntrack_tuple *tuple,
	       struct nf_conntrack_l3proto *l3proto,
	       struct nf_conntrack_l4proto *l4proto,
	       struct sk_buff *skb,
	       unsigned int dataoff, u32 hash)
{
	struct nf_conn *ct;
	struct nf_conn_help *help;
	struct nf_conntrack_tuple repl_tuple;
	struct nf_conntrack_ecache *ecache;
	struct nf_conntrack_expect *exp = NULL;
	const struct nf_conntrack_zone *zone;
	struct nf_conn_timeout *timeout_ext;
	struct nf_conntrack_zone tmp;
	unsigned int *timeouts;
	/*tuplehash的reply方向的tuple赋值,起始就是orig方向的反过来*/
	if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
		pr_debug("Can't invert tuple.\n");
		return NULL;
	}

	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
	/*分配一个nf_conn结构体*/
	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
				  hash);
	if (IS_ERR(ct))
		return (struct nf_conntrack_tuple_hash *)ct;

	if (tmpl && nfct_synproxy(tmpl)) {
		nfct_seqadj_ext_add(ct);
		nfct_synproxy_ext_add(ct);
	}

	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
	if (timeout_ext) {
		timeouts = nf_ct_timeout_data(timeout_ext);
		if (unlikely(!timeouts))
			timeouts = l4proto->get_timeouts(net);
	} else {
		timeouts = l4proto->get_timeouts(net);
	}
	/*对nf_conn进行四层协议的初始化*/
	if (!l4proto->new(ct, skb, dataoff, timeouts)) {
		nf_conntrack_free(ct);
		pr_debug("init conntrack: can't track with proto module\n");
		return NULL;
	}

	if (timeout_ext)
		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
				      GFP_ATOMIC);

	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
	nf_ct_labels_ext_add(ct);
	nf_ct_dscpremark_ext_add(ct, GFP_ATOMIC);

	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
	nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
				 ecache ? ecache->expmask : 0,
			     GFP_ATOMIC);

	local_bh_disable();
	if (net->ct.expect_count) {
		spin_lock(&nf_conntrack_expect_lock);
		/*查找是否是已建立连接的期望连接*/
		exp = nf_ct_find_expectation(net, zone, tuple);
		if (exp) {
			pr_debug("conntrack: expectation arrives ct=%pK exp=%pK\n",
				 ct, exp);
			/* Welcome, Mr. Bond.  We've been expecting you... */
			/*如果是期望连接设置IPS_EXPECTED_BIT标志位并且给ct->master赋值期望*/
			__set_bit(IPS_EXPECTED_BIT, &ct->status);
			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
			ct->master = exp->master;
			if (exp->helper) {
				help = nf_ct_helper_ext_add(ct, exp->helper,
							    GFP_ATOMIC);
				if (help)
					rcu_assign_pointer(help->helper, exp->helper);
			}

#ifdef CONFIG_NF_CONNTRACK_MARK
			ct->mark = exp->master->mark;
#endif
#ifdef CONFIG_NF_CONNTRACK_SECMARK
			ct->secmark = exp->master->secmark;
#endif
			NF_CT_STAT_INC(net, expect_new);
		}
		spin_unlock(&nf_conntrack_expect_lock);
	}
	if (!exp) {
		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
		NF_CT_STAT_INC(net, new);
	}

	/* Now it is inserted into the unconfirmed list, bump refcount */
	nf_conntrack_get(&ct->ct_general);
	nf_ct_add_to_unconfirmed_list(ct);

	local_bh_enable();

	if (exp) {
		if (exp->expectfn)
			exp->expectfn(ct, exp);
		nf_ct_expect_put(exp);
	}

	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
}

3.4.2.8、nf_ct_invert_tuple

bool nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
		   const struct nf_conntrack_tuple *orig,
		   const struct nf_conntrack_l3proto *l3proto,
		   const struct nf_conntrack_l4proto *l4proto)
{
	memset(inverse, 0, sizeof(*inverse));

	inverse->src.l3num = orig->src.l3num;
	/*三层reply方向的初始化*/
	if (l3proto->invert_tuple(inverse, orig) == 0)
		return false;

	inverse->dst.dir = !orig->dst.dir;

	inverse->dst.protonum = orig->dst.protonum;
	/*四层reply方向的tuple初始化*/
	return l4proto->invert_tuple(inverse, orig);
}

3.4.2.9、__nf_conntrack_alloc

static struct nf_conn *
__nf_conntrack_alloc(struct net *net,
		     const struct nf_conntrack_zone *zone,
		     const struct nf_conntrack_tuple *orig,
		     const struct nf_conntrack_tuple *repl,
		     gfp_t gfp, u32 hash)
{
	struct nf_conn *ct;

	if (unlikely(!nf_conntrack_hash_rnd)) {
		init_nf_conntrack_hash_rnd();
		/* recompute the hash as nf_conntrack_hash_rnd is initialized */
		hash = hash_conntrack_raw(orig);
	}

	/* We don't want any race condition at early drop stage */
	atomic_inc(&net->ct.count);
	/*连接跟踪数量已经超过最大值nf_conntrack_max
	根据tuple算出hash值,对于连接跟踪项的status的
	IPS_ASSURED_BIT位没有被置位的连接跟踪项,则强制删除。*/
	if (nf_conntrack_max &&
	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
		if (!early_drop(net, hash)) {
			atomic_dec(&net->ct.count);
			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
			return ERR_PTR(-ENOMEM);
		}
	}

	/*
	 * Do not use kmem_cache_zalloc(), as this cache uses
	 * SLAB_DESTROY_BY_RCU.
	 */
	/*为struct nf_conn分配空间*/
	ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
	if (ct == NULL)
		goto out;

	spin_lock_init(&ct->lock);
	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
	/* save hash for reusing when confirming */
	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
	ct->status = 0;
	/* Don't set timer yet: wait for confirmation */
	setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
	write_pnet(&ct->ct_net, net);
	memset(&ct->__nfct_init_offset[0], 0,
	       offsetof(struct nf_conn, proto) -
	       offsetof(struct nf_conn, __nfct_init_offset[0]));

	if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
		goto out_free;

	/* Because we use RCU lookups, we set ct_general.use to zero before
	 * this is inserted in any list.
	 */
	atomic_set(&ct->ct_general.use, 0);
	return ct;
out_free:
	kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
out:
	atomic_dec(&net->ct.count);
	return ERR_PTR(-ENOMEM);
}

3.4.2.10、nf_ct_tuplehash_to_ctrack

static inline struct nf_conn *
nf_ct_tuplehash_to_ctrack(const struct nf_conntrack_tuple_hash *hash)
{
	return container_of(hash, struct nf_conn,
			    tuplehash[hash->tuple.dst.dir]);
}

3.4.3、ipv4_conntrack_local

static unsigned int ipv4_conntrack_local(void *priv,
					 struct sk_buff *skb,
					 const struct nf_hook_state *state)
{
	/* root is playing with raw sockets. */
	if (skb->len < sizeof(struct iphdr) ||
	    ip_hdrlen(skb) < sizeof(struct iphdr))
		return NF_ACCEPT;
	return nf_conntrack_in(state->net, PF_INET, state->hook, skb);
}

3.4.4、ipv4_helper

static unsigned int ipv4_helper(void *priv,
				struct sk_buff *skb,
				const struct nf_hook_state *state)
{
	struct nf_conn *ct;
	enum ip_conntrack_info ctinfo;
	const struct nf_conn_help *help;
	const struct nf_conntrack_helper *helper;

	/* This is where we call the helper: as the packet goes out. */
	//获取连接跟踪数据,没有建立返回null
	ct = nf_ct_get(skb, &ctinfo);
	if (!ct || ctinfo == IP_CT_RELATED_REPLY)
		return NF_ACCEPT;

	help = nfct_help(ct);
	if (!help)
		return NF_ACCEPT;

	/* rcu_read_lock()ed by nf_hook_slow */
	helper = rcu_dereference(help->helper);
	if (!helper)
		return NF_ACCEPT;

	return helper->help(skb, skb_network_offset(skb) + ip_hdrlen(skb),
			    ct, ctinfo);
}

3.4.5、 nf_conntrack_confirm

确认前面通过 nf_conntrack_in() 创建的新连接(是否被丢弃),将元组从未确认tuplehash列表中删除

/* Confirm a connection: returns NF_DROP if packet must be dropped. */
static inline int nf_conntrack_confirm(struct sk_buff *skb)
{
	//skb所属连接的连接跟踪模块
	struct nf_conn *ct = (struct nf_conn *)skb->nfct;
	int ret = NF_ACCEPT;

	if (ct && !nf_ct_is_untracked(ct)) {
		//检查该连接是否已经被确认过
		if (!nf_ct_is_confirmed(ct))
			ret = __nf_conntrack_confirm(skb);
		if (likely(ret == NF_ACCEPT))
			//向外部模块发送缓存的事件
			nf_ct_deliver_cached_events(ct);
	}
	return ret;
}

3.4.5.1 __nf_conntrack_confirm

int __nf_conntrack_confirm(struct sk_buff *skb)
{
	const struct nf_conntrack_zone *zone;
	unsigned int hash, reply_hash;
	struct nf_conntrack_tuple_hash *h;
	struct nf_conn *ct;
	struct nf_conn_help *help;
	struct nf_conn_tstamp *tstamp;
	struct hlist_nulls_node *n;
	enum ip_conntrack_info ctinfo;
	struct net *net;
	unsigned int sequence;

	ct = nf_ct_get(skb, &ctinfo);
	net = nf_ct_net(ct);

	/* ipt_REJECT uses nf_conntrack_attach to attach related
	   ICMP/TCP RST packets in other direction.  Actual packet
	   which created connection will be IP_CT_NEW or for an
	   expected connection, IP_CT_RELATED. */
	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
		return NF_ACCEPT;

	zone = nf_ct_zone(ct);
	local_bh_disable();

	do {
		sequence = read_seqcount_begin(&net->ct.generation);
		/* reuse the hash saved before */
		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
		hash = hash_bucket(hash, net);
		reply_hash = hash_conntrack(net,
					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple);

	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));

	/* We're not in hash table, and we refuse to set up related
	 * connections for unconfirmed conns.  But packet copies and
	 * REJECT will give spurious warnings here.
	 */
	/* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */

	/* No external references means no one else could have
	 * confirmed us.
	 */
	NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
	pr_debug("Confirming conntrack %pK\n", ct);
	/* We have to check the DYING flag after unlink to prevent
	 * a race against nf_ct_get_next_corpse() possibly called from
	 * user context, else we insert an already 'dead' hash, blocking
	 * further use of that particular connection -JM.
	 */
	nf_ct_del_from_dying_or_unconfirmed_list(ct);

	if (unlikely(nf_ct_is_dying(ct)))
		goto out;

	/* See if there's one in the list already, including reverse:
	   NAT could have grabbed it without realizing, since we're
	   not in the hash.  If there is, we lost race. */
	hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
				      &h->tuple) &&
		    nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
				     NF_CT_DIRECTION(h)))
			goto out;
	hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
		if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
				      &h->tuple) &&
		    nf_ct_zone_equal(nf_ct_tuplehash_to_ctrack(h), zone,
				     NF_CT_DIRECTION(h)))
			goto out;

	/* Timer relative to confirmation time, not original
	   setting time, otherwise we'd get timer wrap in
	   weird delay cases. */
	ct->timeout.expires += jiffies;
	//激活超时定时器
	add_timer(&ct->timeout);
	atomic_inc(&ct->ct_general.use);
	ct->status |= IPS_CONFIRMED;

	/* set conntrack timestamp, if enabled. */
	tstamp = nf_conn_tstamp_find(ct);
	if (tstamp) {
		if (skb->tstamp.tv64 == 0)
			__net_timestamp(skb);

		tstamp->start = ktime_to_ns(skb->tstamp);
	}
	/* Since the lookup is lockless, hash insertion must be done after
	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
	 * guarantee that no other CPU can find the conntrack before the above
	 * stores are visible.
	 */
	__nf_conntrack_hash_insert(ct, hash, reply_hash);
	nf_conntrack_double_unlock(hash, reply_hash);
	NF_CT_STAT_INC(net, insert);
	local_bh_enable();

	help = nfct_help(ct);
	if (help && help->helper)
		nf_conntrack_event_cache(IPCT_HELPER, ct);

	nf_conntrack_event_cache(master_ct(ct) ?
				 IPCT_RELATED : IPCT_NEW, ct);
	return NF_ACCEPT;

out:
	nf_ct_add_to_dying_list(ct);
	nf_conntrack_double_unlock(hash, reply_hash);
	NF_CT_STAT_INC(net, insert_failed);
	local_bh_enable();
	return NF_DROP;
}

3.5、连接超时机制

3.5.1、定时器的初始化

struct nf_conn *nf_conntrack_alloc(struct net *net,
				   const struct nf_conntrack_zone *zone,
				   const struct nf_conntrack_tuple *orig,
				   const struct nf_conntrack_tuple *repl,
				   gfp_t gfp)
{
	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
}

static struct nf_conn *
__nf_conntrack_alloc(struct net *net,
		     const struct nf_conntrack_zone *zone,
		     const struct nf_conntrack_tuple *orig,
		     const struct nf_conntrack_tuple *repl,
		     gfp_t gfp, u32 hash)
{
	struct nf_conn *ct;

	if (unlikely(!nf_conntrack_hash_rnd)) {
		init_nf_conntrack_hash_rnd();
		/* recompute the hash as nf_conntrack_hash_rnd is initialized */
		hash = hash_conntrack_raw(orig);
	}

	/* We don't want any race condition at early drop stage */
	atomic_inc(&net->ct.count);

	if (nf_conntrack_max &&
	    unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
		if (!early_drop(net, hash)) {
			atomic_dec(&net->ct.count);
			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
			return ERR_PTR(-ENOMEM);
		}
	}

	/*
	 * Do not use kmem_cache_zalloc(), as this cache uses
	 * SLAB_DESTROY_BY_RCU.
	 */
	ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
	if (ct == NULL)
		goto out;

	spin_lock_init(&ct->lock);
	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
	/* save hash for reusing when confirming */
	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
	ct->status = 0;
	/* Don't set timer yet: wait for confirmation */
	//定时器的初始化
	setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
	write_pnet(&ct->ct_net, net);
	memset(&ct->__nfct_init_offset[0], 0,
	       offsetof(struct nf_conn, proto) -
	       offsetof(struct nf_conn, __nfct_init_offset[0]));

	if (zone && nf_ct_zone_add(ct, GFP_ATOMIC, zone) < 0)
		goto out_free;

	/* Because we use RCU lookups, we set ct_general.use to zero before
	 * this is inserted in any list.
	 */
	atomic_set(&ct->ct_general.use, 0);
	return ct;
out_free:
	kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
out:
	atomic_dec(&net->ct.count);
	return ERR_PTR(-ENOMEM);
}

3.5.2、定时器超时回调

static void death_by_timeout(unsigned long ul_conntrack)
{
	nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
}

bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
{
	struct nf_conn_tstamp *tstamp;

	tstamp = nf_conn_tstamp_find(ct);
	if (tstamp && tstamp->stop == 0)
		tstamp->stop = ktime_get_real_ns();

	if (nf_ct_is_dying(ct))
		goto delete;

	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
				    portid, report) < 0) {
		/* destroy event was not delivered */
		nf_ct_delete_from_lists(ct);
		nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
		return false;
	}

	nf_conntrack_ecache_work(nf_ct_net(ct));
	set_bit(IPS_DYING_BIT, &ct->status);
 delete:
	nf_ct_delete_from_lists(ct);
	nf_ct_put(ct);
	return true;
}

3.5.3、连接删除

static void clean_from_lists(struct nf_conn *ct)
{
	pr_debug("clean_from_lists(%pK)\n", ct);
	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);

	/* Destroy all pending expectations */
	//销毁所有的期望连接
	nf_ct_remove_expectations(ct);
}

3.5.4、定时器的更新

当收到数据包后,也应该更新该定时器,防止其超时,这是通过调用

static int udp_packet(struct nf_conn *ct,
		      const struct sk_buff *skb,
		      unsigned int dataoff,
		      enum ip_conntrack_info ctinfo,
		      u_int8_t pf,
		      unsigned int hooknum,
		      unsigned int *timeouts)
{
	/* If we've seen traffic both ways, this is some kind of UDP
	   stream.  Extend timeout. */
	if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
		nf_ct_refresh_acct(ct, ctinfo, skb,
				   timeouts[UDP_CT_REPLIED]);
		/* Also, more likely to be important, and not a probe */
		if (!test_and_set_bit(IPS_ASSURED_BIT, &ct->status))
			nf_conntrack_event_cache(IPCT_ASSURED, ct);
	} else {
		nf_ct_refresh_acct(ct, ctinfo, skb,
				   timeouts[UDP_CT_UNREPLIED]);
	}
	return NF_ACCEPT;
}

static inline void nf_ct_refresh_acct(struct nf_conn *ct,
				      enum ip_conntrack_info ctinfo,
				      const struct sk_buff *skb,
				      unsigned long extra_jiffies)
{
	__nf_ct_refresh_acct(ct, ctinfo, skb, extra_jiffies, 1);
}

void __nf_ct_refresh_acct(struct nf_conn *ct,
			  enum ip_conntrack_info ctinfo,
			  const struct sk_buff *skb,
			  unsigned long extra_jiffies,
			  int do_acct)
{
	NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
	NF_CT_ASSERT(skb);

	/* Only update if this is not a fixed timeout */
	//设定了该标记的连接的超时值将无法被更新
	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
		goto acct;

	/* If not in hash table, timer will not be active yet */
	if (!nf_ct_is_confirmed(ct)) {
		//连接跟踪信息快还没被确认时,该定时器就还没有被激活,此时重新设定超时时间,认为是重新更新超时时间戳
		ct->timeout.expires = extra_jiffies;
	} else {
		//传入超时值是当前时间的相对值
		unsigned long newtime = jiffies + extra_jiffies;

		/* Only update the timeout if the new timeout is at least
		   HZ jiffies from the old timeout. Need del_timer for race
		   avoidance (may already be dying). */
		//只有当新的超时值至少超过单管超时值1S时才重新更新定时器
		if (newtime - ct->timeout.expires >= HZ)
			mod_timer_pending(&ct->timeout, newtime);
	}

acct:
	//做数据统计
	if (do_acct) {
		struct nf_conn_acct *acct;

		acct = nf_conn_acct_find(ct);
		if (acct) {
			struct nf_conn_counter *counter = acct->counter;

			atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
			atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
		}
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/917934.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

天润融通「微藤大语言模型平台2.0」以知识驱动企业高速增长

8月23日&#xff0c;天润融通&#xff08;又称“天润云”,2167.HK&#xff09;&#xff0c;正式发布「微藤大语言模型平台2.0」。 “大模型企业知识企业知识工程”。 “不能有效记录和管理知识的企业是不能持续进步的。在企业的生产流程中&#xff0c;相比于其他场景&#xff0…

Heikin Ashi最简单的一种烛台移动平均线

是不是每次进行交易的时候&#xff0c;市场上的各种新闻真真假假&#xff0c;搞的交易者每次都分不清楚&#xff0c;今天FPmarkets澳福给各位投资者推荐一种交易策略——“Heikin Ashi” “Heikin Ashi”只通过四个参数构建&#xff1a;开盘价、收盘价、最高价和最低价(最大和…

Vlan技术实操(第四课)

一 代码的常用命令一 vlan的增删改查 1&#xff09;创建vlan[SW1]vlan 2 [2-4094] 创建vlan[SW1]vlan batch 10 20 30 创建多个不连续的vlan[SW1]display vlan 查看vlan信息[SW1]vlan batch 50 to 60创建多个连续的vlan[SW1]vlan2[SW1-vlan2]description caiwu添加描述信息&am…

分布式锁 总结

分布式锁 在应用开发中&#xff0c;特别是web工程开发&#xff0c;通常都是并发编程&#xff0c;不是多进程就是多线程。这种场景下极易出现线程并发性安全问题&#xff0c;此时不得不使用锁来解决问题。在多线程高并发场景下&#xff0c;为了保证资源的线程安全问题&#xff0…

震惊!友达台中厂长传过劳逝世 | 百能云芯

8月23日消息&#xff0c;近日面板大厂友达风波不断&#xff0c;8月3日有消息称&#xff0c;生产笔电的5代厂与电视的6代厂已经半年没有订单了&#xff0c;面板产业很惨&#xff0c;预计裁员100至200人。今天接到消息称&#xff0c;任职才1年的台中友达6A厂厂长&#xff0c;传因…

8月第3周榜单丨哔哩哔哩飞瓜数据B站UP主排行榜发布!

飞瓜轻数发布2023年8月14日-8月20日飞瓜数据UP主排行榜&#xff08;B站平台&#xff09;&#xff0c;通过充电数、涨粉数、成长指数、带货数据等维度来体现UP主账号成长的情况&#xff0c;为用户提供B站号综合价值的数据参考&#xff0c;根据UP主成长情况用户能够快速找到运营能…

拨慢人体衰老时钟,MIT 利用 Chemprop 模型发现兼具药效与安全性的细胞抗衰化合物

内容一览&#xff1a;从光鲜亮丽的明星&#xff0c;到素装淡裹的普通人&#xff0c;大家都会无可避免地老去&#xff0c;经历形容的变化与身体机能的退化。正因为此&#xff0c;人们也在努力寻找延缓衰老的秘方。然而&#xff0c;现有的抗衰老药物总伴有一些副作用。近期&#…

大语言模型初学者指南 (2023)

大语言模型 (LLM) 是深度学习的一个子集&#xff0c;它正在彻底改变自然语言处理领域。它们是功能强大的通用语言模型&#xff0c;可以针对大量数据进行预训练&#xff0c;然后针对特定任务进行微调。这使得LLM能够拥有大量的一般数据。如果一个人想将LLM用于特定目的&#xff…

vue3 父子传值的使用

父传子&#xff1a; setup语法糖的写法&#xff1a; 子传父&#xff1a; setup语糖的写法&#xff1a;

STP知识点总结

目录 一.什么是STP协议 二.STP生成树协议产生的原因 三. STP生成树协议涉及的算法 一.802.1D 二.PVST 三.PVST 四. 快速生成树 五.MSTP 一.什么是STP协议 在一个二层交换网络中&#xff0c;生成一棵树型结构&#xff0c;逻辑的阻塞部分接口&#xff0c;使得从根到所有的…

代码记录鸭1

要实现登录有两个重要组成&#xff0c;一个是共享组件的应用程序项&#xff0c;另一个是共享组件的验证方案&#xff0c;先创建应用程序项&#xff1a; 名称有要求 改成新的ApexLogonTestWxx 创建成功 我设置的是启用 确定生成的用于导航到应用程序中其他页的 URL 是否应更易于…

如何评价国内的低代码开发平台(apaas)?

什么是低代码&#xff1f;低代码平台有什么价值&#xff1f;低代码开发到底能适应多广泛场景&#xff1f;低代码到底能做出多么复杂的应用&#xff1f;低代码平台应该如何筛选&#xff1f; 在低代码重新火爆的今天&#xff0c;我们又该如何利用低代码&#xff1f; 01 什么是a…

为何汽车品牌如此钟爱数字人?揭秘一种很新的「交互」营销思路

随着新能源补贴退坡&#xff0c;互联网行业高速发展的红利衰退&#xff0c;汽车行业竞争越来越激烈。 在数智化潮流冲击下&#xff0c;传统车企和新势力汽车品牌都纷纷借助数字人营销&#xff0c;打破增长困境&#xff0c;致力于推动数字人在车端以及营销内容的广泛应用&#…

生信豆芽菜-桑基图

网址&#xff1a;http://www.sxdyc.com/visualsPlotSankey 1、数据准备 表型信息&#xff1a; 2、设置图片的高度和宽度&#xff0c;提交等待运行成功 3、结果 当然&#xff0c;如果不清楚数据是什么样的&#xff0c;可以选择下载我们的示例数据&#xff0c;也可以关注&…

环肽52661-98-0;(3S)-3-(Hydroxymethyl)-2,5-piperazinedione

中文名&#xff1a;环(甘氨酰-L-丝氨酰) 环(甘氨酰-丝氨酰&#xff09; 英文名&#xff1a;cyclo(Gly-Ser) cyclo(-gly-ser) 2,5-Piperazinedione, 3-(hydroxymethyl)-, (3S)- (3S)-3-(Hydroxymethyl)-2,5-piperazinedione CAS&#xff1a;52661-98-0 分子式&#xff1a…

锐捷ACL的基础知识--尚文网络敏姐

ACL控制访问列表 目录 ACL控制访问列表 1.1.ACL概念 1.2.ACL两大功能 1.ACL流量控制 2.ACL路由匹配 1.3.通配符 1.4. ACE访问控制表项 ACE概念 ACE两种动作 2.1.访问控制列表常用类型 IP标准ACL IP扩展ACL 2.2.访问控制列表的命名 数字命名 自定义名称 2.3.实验…

智慧工地:安防监控EasyCVR智慧工地视频监管风险预警平台的应用

智慧工地方案是一种结合现代化技术与工地管理实践的创新型解决方案。它通过实时监控、数据分析、人工智能等技术手段&#xff0c;使工地管理更加高效、智能化。在建设智慧工地的过程中&#xff0c;除了上述提到的利用物联网技术实现设备互联、数据采集及分析以外&#xff0c;还…

map函数用法

定义&#xff1a; map() 方法创建一个新数组&#xff0c;这个新数组由原数组中的每个元素都调用一次提供的函数后的返回值组成 map()不会对空数组进行检测map()不会改变原始数组 语法 &#xff1a;map(function( element,index,array ){ }, thisArg) 参数说明&#xff1a; …

Spring事务和事务传播机制(2)

前言&#x1f36d; ❤️❤️❤️SSM专栏更新中&#xff0c;各位大佬觉得写得不错&#xff0c;支持一下&#xff0c;感谢了&#xff01;❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中&#xff0c;事务管理是一种用于维护数据库操作的一致性和…

数据库锁的分类 各种锁

锁的一个分类 数据库中的锁前言分享链接个人总结全局锁&#xff1a;表级锁行级锁&#xff1a; 数据库中的锁 前言 C支持并发有锁&#xff0c;Linux里面也有锁机制&#xff0c;数据库也有锁&#xff0c;什么互斥锁&#xff0c;表级锁&#xff0c;间隙锁&#xff0c;好多…&…