目录
五、PWM
六、RTC
五、PWM
PWM(Pulse Width Modulation,脉宽调制器),顾名思义就是一个输出脉冲宽度可以调整的硬件器件,其实它不仅脉冲宽度可调,频率也可以调整。它的核心部件是一个硬件定时器,其工作原理可以用下图来说明。
PWM 管脚默认输出高电平,在图中的时刻1将数值设为 109,比较值设为109,在时刻2启动定时器,PWM 立即输出低电平,在时钟的作用下,计数器开始做减法计数,当计数值减到和比较值一致时(时刻 3),输出翻转,之后一直输出高电平。当计数到达0后(时刻4),再完成一次计数,在时刻5 重新从 109 开始计数,输出再次变成低电平,如此周而复始就形成一个矩形波。波形的周期由计数值决定,占空比由比较值决定。在图中,占空比为 110/160,如果用于计数的时钟频率为 freq,那么波形的频率就为freg/160。
FS4412使用了其中一路PWM 输出 (PWMO,对应管脚是GPD0.0)接蜂鸣器,其电路原理图如图所示。
PWM0的内部结构如图所示。
PWM 的输入时钟是 PCLK,经过8位的预分频后再经过第二次分频的时钟最终给到PWMO所对应的计数器0。TCNTB0是计数值寄存器,用于控制PWM输出波形的频率TCMPB0是比较寄存器,用于控制 PWM 输出波形的占空比,其输出还可以选择是否反向,是否有死区控制等(关于死区暂时不做介绍,感兴趣的同学可以了解一下电机控制)。
接下来以PWM0为例,来讨论 PWM 的各寄存器(重点关注相关位)
TCON寄存器主要用timer0
TCON寄存器的比特1比较特殊,当要手动更新TCNTBO或TCMPBO的值时,先将对应的值写入寄存器,然后将 TCON 寄存器的比特1先置1再清0,这样新的值才会生效。
设备树节点的源码如下。
beep@139D0000 {
compatible = "fs4412,fspwm";
reg=<0x139D0000 0x24>;
clocks=<&clock 336>;
clock-names="timers";
pinctrl-0=<pwm0 out>;
pinctrI-names ="default";
};
因为 PWM 使用到了一个时钟,在这里的 clocks 属性指定了 PWM 所使用的时钟clock-names 属性则给该时钟取了一个名字叫 timers,方便在驱动中获取该时钟。时钟的编号可以查看Documentation/devicetree/bindings/clock/exynos4-clock.txt内核文档。pinctrl-0属性则描述了PWM使用的GPIO管脚,它指定管脚是pwm0_out,相应的设备树节点定义在arch/arm/boot/dts/exynos4x12-pinctrldtsi,内容如下。
pwm0_out:pwm0-out {
samsung,pins = "gpd0-0";
samsung,pin-function = <2>;
samsung,pin-drv = <0>;
samsung,pin-drv=<0>;
};
有了这个节点的定义后,我们在驱动中可以利用 pinctrl 子系统的API接口函数快捷地将对应管脚设置为想要的配置方式(我们这里就不详细讨论 pinctrl 子系统,但最常用的一个API将会在后面说明)。上面的节点表示将 GPD0.0管脚配置为功能2,即PWM0 的输出不上拉,驱动强度为最低级别。pinctrl-names 属性是给管脚命名,方便在驱动中获取。
下面就是时钟子系统和 pinctrl 子系统中最常用的函数。
struct cik *clk_get(struct device *dev, const char *id);
void clk_put (struct clk *clk);
unsigned long clk_get_rate(strut clk *clk);
int clk_set_rate(struct clk *clk, unsigned long rate);
int clk_prepare_enable(struct clk *clk);
void clk_disable_unprepare(struct clk *clk);
struct pinctrl * devm_pinctrl_get_select_default(struct device *dev);
cik_get: 从dev 中的设备节点中获取名字为 id 的时钟,返回 structclk 结构对象地址,用ISERR宏判断是否错误,用PTR ERR返回错误代码。
clkput:释放clk。
clk_get_rate:获取时钟 clk 的频率.
clk_set_rate:设置时钟clk 的频率。
clk_prepare_enable:使能时钟。
clk_disable_unprepare:禁止时钟。
devm_pinctrl_get_select_default: 从 dev 中的设备节点中获取 pinctrl 管脚,并进行指定的配置。
有了上面的基础之后,就可以编写相应的驱动代码了。下面的驱动用于驱动蜂鸣器发声,所以应用层应该能够启动 PWM、停止PWM、设置 PWM 输出波形的频率,占空比恒定为50%。关于频率的设置可以利用下面的公式:
out freg= PCIK /(Prescaler0 +1)/ Divider MUX0 / (TCNTBO+1)
主要的代码如下
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/pinctrl/consumer.h>
#include "fspwm.h"
#define FSPWM_MAJOR 256
#define FSPWM_MINOR 7
#define FSPWM_DEV_NAME "fspwm"
struct fspwm_dev {
unsigned int __iomem *tcfg0;
unsigned int __iomem *tcfg1;
unsigned int __iomem *tcon;
unsigned int __iomem *tcntb0;
unsigned int __iomem *tcmpb0;
unsigned int __iomem *tcnto0;
struct clk *clk;
unsigned long freq;
struct pinctrl *pctrl;
atomic_t available;
struct cdev cdev;
};
static int fspwm_open(struct inode *inode, struct file *filp)
{
struct fspwm_dev *fspwm = container_of(inode->i_cdev, struct fspwm_dev, cdev);
filp->private_data = fspwm;
if (atomic_dec_and_test(&fspwm->available))
return 0;
else {
atomic_inc(&fspwm->available);
return -EBUSY;
}
}
static int fspwm_release(struct inode *inode, struct file *filp)
{
struct fspwm_dev *fspwm = filp->private_data;
atomic_inc(&fspwm->available);
return 0;
}
static long fspwm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct fspwm_dev *fspwm = filp->private_data;
unsigned int div;
if (_IOC_TYPE(cmd) != FSPWM_MAGIC)
return -ENOTTY;
switch (cmd) {
case FSPWM_START:
writel(readl(fspwm->tcon) | 0x1, fspwm->tcon);
break;
case FSPWM_STOP:
writel(readl(fspwm->tcon) & ~0x1, fspwm->tcon);
break;
case FSPWM_SET_FREQ:
if (arg > fspwm->freq || arg == 0)
return -ENOTTY;
div = fspwm->freq / arg - 1;
writel(div, fspwm->tcntb0);
writel(div / 2, fspwm->tcmpb0);
writel(readl(fspwm->tcon) | 0x2, fspwm->tcon);
writel(readl(fspwm->tcon) & ~0x2, fspwm->tcon);
break;
default:
return -ENOTTY;
}
return 0;
}
static struct file_operations fspwm_ops = {
.owner = THIS_MODULE,
.open = fspwm_open,
.release = fspwm_release,
.unlocked_ioctl = fspwm_ioctl,
};
static int fspwm_probe(struct platform_device *pdev)
{
int ret;
dev_t dev;
struct fspwm_dev *fspwm;
struct resource *res;
unsigned int prescaler0;
dev = MKDEV(FSPWM_MAJOR, FSPWM_MINOR);
ret = register_chrdev_region(dev, 1, FSPWM_DEV_NAME);
if (ret)
goto reg_err;
fspwm = kzalloc(sizeof(struct fspwm_dev), GFP_KERNEL);
if (!fspwm) {
ret = -ENOMEM;
goto mem_err;
}
platform_set_drvdata(pdev, fspwm);
cdev_init(&fspwm->cdev, &fspwm_ops);
fspwm->cdev.owner = THIS_MODULE;
ret = cdev_add(&fspwm->cdev, dev, 1);
if (ret)
goto add_err;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENOENT;
goto res_err;
}
fspwm->tcfg0 = ioremap(res->start, resource_size(res));
if (!fspwm->tcfg0) {
ret = -EBUSY;
goto map_err;
}
fspwm->tcfg1 = fspwm->tcfg0 + 1;
fspwm->tcon = fspwm->tcfg0 + 2;
fspwm->tcntb0 = fspwm->tcfg0 + 3;
fspwm->tcmpb0 = fspwm->tcfg0 + 4;
fspwm->tcnto0 = fspwm->tcfg0 + 5;
fspwm->clk = clk_get(&pdev->dev, "timers");
if (IS_ERR(fspwm->clk)) {
ret = PTR_ERR(fspwm->clk);
goto get_clk_err;
}
ret = clk_prepare_enable(fspwm->clk);
if (ret < 0)
goto enable_clk_err;
fspwm->freq = clk_get_rate(fspwm->clk);
prescaler0 = readl(fspwm->tcfg0) & 0xFF;
writel((readl(fspwm->tcfg1) & ~0xF) | 0x4, fspwm->tcfg1); /* 1/16 */
fspwm->freq /= (prescaler0 + 1) * 16; /* 3125000 */
writel((readl(fspwm->tcon) & ~0xF) | 0x8, fspwm->tcon); /* auto-reload */
fspwm->pctrl = devm_pinctrl_get_select_default(&pdev->dev);
atomic_set(&fspwm->available, 1);
return 0;
enable_clk_err:
clk_put(fspwm->clk);
get_clk_err:
iounmap(fspwm->tcfg0);
map_err:
res_err:
cdev_del(&fspwm->cdev);
add_err:
kfree(fspwm);
mem_err:
unregister_chrdev_region(dev, 1);
reg_err:
return ret;
}
static int fspwm_remove(struct platform_device *pdev)
{
dev_t dev;
struct fspwm_dev *fspwm = platform_get_drvdata(pdev);
dev = MKDEV(FSPWM_MAJOR, FSPWM_MINOR);
clk_disable_unprepare(fspwm->clk);
clk_put(fspwm->clk);
iounmap(fspwm->tcfg0);
cdev_del(&fspwm->cdev);
kfree(fspwm);
unregister_chrdev_region(dev, 1);
return 0;
}
static const struct of_device_id fspwm_of_matches[] = {
{ .compatible = "fs4412,fspwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fspwm_of_matches);
struct platform_driver fspwm_drv = {
.driver = {
.name = "fspwm",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(fspwm_of_matches),
},
.probe = fspwm_probe,
.remove = fspwm_remove,
};
module_platform_driver(fspwm_drv);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("name <e-mail>");
MODULE_DESCRIPTION("PWM driver");
#ifndef _FSPWM_H
#define _FSPWM_H
#define FSPWM_MAGIC 'f'
#define FSPWM_START _IO(FSPWM_MAGIC, 0)
#define FSPWM_STOP _IO(FSPWM_MAGIC, 1)
#define FSPWM_SET_FREQ _IOW(FSPWM_MAGIC, 2, unsigned int)
#endif
代码第 27 行至第 32 行是对应的寄存器虚拟地址成员变量。代码第 33 行是获得的PCLK时钟对象指针。代码第 34 行是计算后得到的送入定时器0的时钟频率。代码第35行是PWM输出管脚所对应的pinctrl对象指针。
在 fspwm_probe 函数中,和前面一样也是注册字符设备、获取IO资源并进行映射等操作。代码第 142行至第 151 行是获取 PCLK 时钟,然后使能和获取频率的代码。代码第 153 行获得了预分频值。代码第 154 行将二级分频设置为 16,代码第 155 行则计算得到了输入到定时器0的时钟频率。代码第 156 行将定时器设置为自动重装模式,用于持续输出PWM 波形。代码第158 行将 GPDO.0管脚设置为 PWMO的输出。
在fspwm_ioctl 函数中,FSPWM_START 是启动 PWM 的命令,将TCON 的比特0置1即可。FSPWM_STOP 是停止 PWM 的命令,将 TCON 的比特0清0即可FSPWM_SET_FREQ 是设置频率的命令,首先判断了要设置的频率是否超过了范围和是否合法,接下来根据前面的公式计算出了计数值,然后设置了 TCNTBO和TCMPBO,最后根据前面的描述操作 TCON 的比特 1更新新的计数值和比较值。
测试的应用层头文件代码如下。
#ifndef _MUSIC_H
#define _MUSIC_H
typedef struct
{
int pitch;
int dimation;
} note;
// 1 2 3 4 5 6 7
// C D E F G A B
// 261.6256 293.6648 329.6276 349.2282 391.9954 440 493.8833
// C调
#define DO 262
#define RE 294
#define MI 330
#define FA 349
#define SOL 392
#define LA 440
#define SI 494
#define BEAT (60000000 / 120)
const note HappyNewYear[] = {
{DO, BEAT/2}, {DO, BEAT/2}, {DO, BEAT}, {SOL/2, BEAT},
{MI, BEAT/2}, {MI, BEAT/2}, {MI, BEAT}, {DO, BEAT},
{DO, BEAT/2}, {MI, BEAT/2}, {SOL, BEAT}, {SOL, BEAT},
{FA, BEAT/2}, {MI, BEAT/2}, {RE, BEAT}, {RE, BEAT},
{RE, BEAT/2}, {MI, BEAT/2}, {FA, BEAT}, {FA, BEAT},
{MI, BEAT/2}, {RE, BEAT/2}, {MI, BEAT}, {DO, BEAT},
{DO, BEAT/2}, {MI, BEAT/2}, {RE, BEAT}, {SOL/2, BEAT},
{SI/2, BEAT/2}, {RE, BEAT/2}, {DO, BEAT}, {DO, BEAT},
};
#endif
note 表示的是一个音符,pitch 表示音高,dimation 表示音符演奏的时间HappyNewYear是《新年好》歌曲的各音符表示。测试的应用层代码如下
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <errno.h>
#include "fspwm.h"
#include "music.h"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
int main(int argc, char *argv[])
{
int i;
int fd;
int ret;
unsigned int freq;
fd = open("/dev/pwm", O_RDWR);
if (fd == -1)
goto fail;
ret = ioctl(fd, FSPWM_START);
if (ret == -1)
goto fail;
for (i = 0; i < ARRAY_SIZE(HappyNewYear); i++) {
ret = ioctl(fd, FSPWM_SET_FREQ, HappyNewYear[i].pitch);
if (ret == -1)
goto fail;
usleep(HappyNewYear[i].dimation);
}
ret = ioctl(fd, FSPWM_STOP);
if (ret == -1)
goto fail;
exit(EXIT_SUCCESS);
fail:
perror("pwm test");
exit(EXIT_FAILURE);
}
代码中首先打开了设备,然后启动了 PWM 输出,在 for 循环中依次取出乐曲中的各个音符,然后设置频率,再延时指定的时间,这就完成了乐曲的演奏,最后停止了 PWM。
编译和测试的命令如下,如果工作正常会听到《新年好》的音乐声。
效果我发了个视频还没审核过感兴趣的可以后面看我在csdn上的视频
六、RTC
RTC(Real Time Clock,实时时钟) 用于产生年、月、日、时、分、秒的硬件器件。现在的计算机系统上几乎都包含了这个器件,有的 RTC 还带闹钟功能。它的工作原理也非常简单,就是将 1Hz 的时钟用于计数,按照不同的进制产生进位,从而生成上面的时间。
Exynos4412 上自带一个RTC,带闹钟的功能,为了简单,我们省略对这部分内容的讨论,只关心和时间相关的寄存器,见下表。
上面只列出了秒时间的寄存器,类似的还有分、天、月等。上面涉及一个BCD 码,所谓的BCD码就是用十六进制来表示十进制,比如0x59就是十进制的59。Linux内核提供了两者之间相互转换的宏,bcd2bin 是将 BCD码转换成一般的整形数,bin2bcd 则相反。
下面是RTC的设备树节点。
rtc@100700000 {
compatible = "fs4412,fsrtc";
reg = <0x10070000 0x100>;
clocks = <&clock 346>;
clock-names ="rtc";
status = "okay";
};
时钟属性请参照 Documentation/devicetree/bindings/clock/exynos4-clock.txt 内核文档status属性设定为okay,是因为该节点在arch/arm/boot/dts/exynos4.dtsi中已经定义过了在那里status 的值为 disabled,表示禁止,要使能该节点就需要将 status 属性改为 okay。
驱动的实现比较简单,在时间的设置方面,首先将 RTCCON 寄存器的比特0置1然后将时间值转换成 BCD 码再写入到相应的寄存器,最后将 RTCCON 寄存器的比特0清0即可。时间获取则读出寄存器的值,然后将 BCD码转成一般的整数即可。关于时间定义了一个结构 struct rtc_time,请参见源码的头文件。关键的驱动代码如下
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/ioctl.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/clk.h>
#include <linux/pinctrl/consumer.h>
#include <linux/bcd.h>
#include "fsrtc.h"
#define FSRTC_MAJOR 256
#define FSRTC_MINOR 8
#define FSRTC_DEV_NAME "fsrtc"
struct fsrtc_dev {
unsigned int __iomem *rtccon;
unsigned int __iomem *bcdsec;
unsigned int __iomem *bcdmin;
unsigned int __iomem *bcdhour;
unsigned int __iomem *bcdday;
unsigned int __iomem *bcdmon;
unsigned int __iomem *bcdyear;
struct clk *clk;
atomic_t available;
struct cdev cdev;
};
static int fsrtc_open(struct inode *inode, struct file *filp)
{
struct fsrtc_dev *fsrtc = container_of(inode->i_cdev, struct fsrtc_dev, cdev);
filp->private_data = fsrtc;
if (atomic_dec_and_test(&fsrtc->available))
return 0;
else {
atomic_inc(&fsrtc->available);
return -EBUSY;
}
}
static int fsrtc_release(struct inode *inode, struct file *filp)
{
struct fsrtc_dev *fsrtc = filp->private_data;
atomic_inc(&fsrtc->available);
return 0;
}
static long fsrtc_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct fsrtc_dev *fsrtc = filp->private_data;
struct rtc_time time;
if (_IOC_TYPE(cmd) != FSRTC_MAGIC)
return -ENOTTY;
switch (cmd) {
case FSRTC_SET:
if (copy_from_user(&time, (struct rtc_time __user *)arg, sizeof(struct rtc_time)))
return -ENOTTY;
writel(readl(fsrtc->rtccon) | 0x1, fsrtc->rtccon);
writel(bin2bcd(time.tm_sec ), fsrtc->bcdsec);
writel(bin2bcd(time.tm_min ), fsrtc->bcdmin);
writel(bin2bcd(time.tm_hour), fsrtc->bcdhour);
writel(bin2bcd(time.tm_mday), fsrtc->bcdday);
writel(bin2bcd(time.tm_mon ), fsrtc->bcdmon);
writel(bin2bcd(time.tm_year - 2000), fsrtc->bcdyear);
writel(readl(fsrtc->rtccon) & ~0x1, fsrtc->rtccon);
break;
case FSRTC_GET:
time.tm_sec = bcd2bin(readl(fsrtc->bcdsec));
time.tm_min = bcd2bin(readl(fsrtc->bcdmin));
time.tm_hour = bcd2bin(readl(fsrtc->bcdhour));
time.tm_mday = bcd2bin(readl(fsrtc->bcdday));
time.tm_mon = bcd2bin(readl(fsrtc->bcdmon));
time.tm_year = bcd2bin(readl(fsrtc->bcdyear)) + 2000;
if (copy_to_user((struct rtc_time __user *)arg, &time, sizeof(struct rtc_time)))
return -ENOTTY;
break;
default:
return -ENOTTY;
}
return 0;
}
static struct file_operations fsrtc_ops = {
.owner = THIS_MODULE,
.open = fsrtc_open,
.release = fsrtc_release,
.unlocked_ioctl = fsrtc_ioctl,
};
static int fsrtc_probe(struct platform_device *pdev)
{
int ret;
dev_t dev;
struct fsrtc_dev *fsrtc;
struct resource *res;
unsigned int __iomem *regbase;
dev = MKDEV(FSRTC_MAJOR, FSRTC_MINOR);
ret = register_chrdev_region(dev, 1, FSRTC_DEV_NAME);
if (ret)
goto reg_err;
fsrtc = kzalloc(sizeof(struct fsrtc_dev), GFP_KERNEL);
if (!fsrtc) {
ret = -ENOMEM;
goto mem_err;
}
platform_set_drvdata(pdev, fsrtc);
cdev_init(&fsrtc->cdev, &fsrtc_ops);
fsrtc->cdev.owner = THIS_MODULE;
ret = cdev_add(&fsrtc->cdev, dev, 1);
if (ret)
goto add_err;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
ret = -ENOENT;
goto res_err;
}
regbase = ioremap(res->start, resource_size(res));
if (!regbase) {
ret = -EBUSY;
goto map_err;
}
fsrtc->rtccon = regbase + 16;
fsrtc->bcdsec = regbase + 28;
fsrtc->bcdmin = regbase + 29;
fsrtc->bcdhour = regbase + 30;
fsrtc->bcdday = regbase + 31;
fsrtc->bcdmon = regbase + 33;
fsrtc->bcdyear = regbase + 34;
fsrtc->clk = clk_get(&pdev->dev, "rtc");
if (IS_ERR(fsrtc->clk)) {
ret = PTR_ERR(fsrtc->clk);
goto get_clk_err;
}
ret = clk_prepare_enable(fsrtc->clk);
if (ret < 0)
goto enable_clk_err;
writel(0, fsrtc->rtccon);
atomic_set(&fsrtc->available, 1);
return 0;
enable_clk_err:
clk_put(fsrtc->clk);
get_clk_err:
iounmap(fsrtc->rtccon - 16);
map_err:
res_err:
cdev_del(&fsrtc->cdev);
add_err:
kfree(fsrtc);
mem_err:
unregister_chrdev_region(dev, 1);
reg_err:
return ret;
}
static int fsrtc_remove(struct platform_device *pdev)
{
dev_t dev;
struct fsrtc_dev *fsrtc = platform_get_drvdata(pdev);
dev = MKDEV(FSRTC_MAJOR, FSRTC_MINOR);
clk_disable_unprepare(fsrtc->clk);
clk_put(fsrtc->clk);
iounmap(fsrtc->rtccon - 16);
cdev_del(&fsrtc->cdev);
kfree(fsrtc);
unregister_chrdev_region(dev, 1);
return 0;
}
static const struct of_device_id fsrtc_of_matches[] = {
{ .compatible = "fs4412,fsrtc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsrtc_of_matches);
struct platform_driver fsrtc_drv = {
.driver = {
.name = "fsrtc",
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(fsrtc_of_matches),
},
.probe = fsrtc_probe,
.remove = fsrtc_remove,
};
module_platform_driver(fsrtc_drv);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("name <e-mail>");
MODULE_DESCRIPTION("RTC driver");
#ifndef _FSRTC_H
#define _FSRTC_H
struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
};
#define FSRTC_MAGIC 'f'
#define FSRTC_SET _IOW(FSRTC_MAGIC, 0, struct rtc_time)
#define FSRTC_GET _IOR(FSRTC_MAGIC, 1, struct rtc_time)
#endif
上面的代码比较简单,在此不再多解释。需要注意的是,手册给出的 BCDDAYWEEK和BCDDAY 两个寄存器的地址交换了,需要交换过来。另外,寄存器存放的年份只有3位,所以固定添加了 2000 的偏移。应用层的测试代码也请参见下载资源里面的源码。
测试的结果如下。
其实 Linux 内核针对 RTC有一个现成的框架,类似于输入子系统一样,我们只需要使用相应的API,然后再实现要求的接口函数即可。Exynos4412的 RTC 驱动在内核中也已经实现好了,请参见内核源码 drivers/rtc/rtc-s3c.c,这个源码留给大家自己去分析。那么我们要如何使用这个驱动呢?首先将设备树节点改为下面的样子。
没错,确实这么简单,因为在arch/arm/boot/dts/exynos4.dtsi中已经定义过该节点了现在只需要使能该节点即可。另外就是要确认内核中驱动已经被选配,参见下面的面置项。
重新编译设备树和内核后,复制文件到 TFTP 服务器指定的目录,启动开发板,使用下面的命令可以确认驱动工作正常。
/* drivers/rtc/rtc-s3c.c
*
* Copyright (c) 2010 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* Copyright (c) 2004,2006 Simtec Electronics
* Ben Dooks, <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* S3C2410/S3C2440/S3C24XX Internal RTC Driver
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <asm/irq.h>
#include "rtc-s3c.h"
enum s3c_cpu_type {
TYPE_S3C2410,
TYPE_S3C2416,
TYPE_S3C2443,
TYPE_S3C64XX,
};
struct s3c_rtc_drv_data {
int cpu_type;
};
/* I have yet to find an S3C implementation with more than one
* of these rtc blocks in */
static struct clk *rtc_clk;
static void __iomem *s3c_rtc_base;
static int s3c_rtc_alarmno = NO_IRQ;
static int s3c_rtc_tickno = NO_IRQ;
static enum s3c_cpu_type s3c_rtc_cpu_type;
static DEFINE_SPINLOCK(s3c_rtc_pie_lock);
static void s3c_rtc_alarm_clk_enable(bool enable)
{
static DEFINE_SPINLOCK(s3c_rtc_alarm_clk_lock);
static bool alarm_clk_enabled;
unsigned long irq_flags;
spin_lock_irqsave(&s3c_rtc_alarm_clk_lock, irq_flags);
if (enable) {
if (!alarm_clk_enabled) {
clk_enable(rtc_clk);
alarm_clk_enabled = true;
}
} else {
if (alarm_clk_enabled) {
clk_disable(rtc_clk);
alarm_clk_enabled = false;
}
}
spin_unlock_irqrestore(&s3c_rtc_alarm_clk_lock, irq_flags);
}
/* IRQ Handlers */
static irqreturn_t s3c_rtc_alarmirq(int irq, void *id)
{
struct rtc_device *rdev = id;
clk_enable(rtc_clk);
rtc_update_irq(rdev, 1, RTC_AF | RTC_IRQF);
if (s3c_rtc_cpu_type == TYPE_S3C64XX)
writeb(S3C2410_INTP_ALM, s3c_rtc_base + S3C2410_INTP);
clk_disable(rtc_clk);
s3c_rtc_alarm_clk_enable(false);
return IRQ_HANDLED;
}
static irqreturn_t s3c_rtc_tickirq(int irq, void *id)
{
struct rtc_device *rdev = id;
clk_enable(rtc_clk);
rtc_update_irq(rdev, 1, RTC_PF | RTC_IRQF);
if (s3c_rtc_cpu_type == TYPE_S3C64XX)
writeb(S3C2410_INTP_TIC, s3c_rtc_base + S3C2410_INTP);
clk_disable(rtc_clk);
return IRQ_HANDLED;
}
/* Update control registers */
static int s3c_rtc_setaie(struct device *dev, unsigned int enabled)
{
unsigned int tmp;
dev_dbg(dev, "%s: aie=%d\n", __func__, enabled);
clk_enable(rtc_clk);
tmp = readb(s3c_rtc_base + S3C2410_RTCALM) & ~S3C2410_RTCALM_ALMEN;
if (enabled)
tmp |= S3C2410_RTCALM_ALMEN;
writeb(tmp, s3c_rtc_base + S3C2410_RTCALM);
clk_disable(rtc_clk);
s3c_rtc_alarm_clk_enable(enabled);
return 0;
}
static int s3c_rtc_setfreq(struct device *dev, int freq)
{
struct platform_device *pdev = to_platform_device(dev);
struct rtc_device *rtc_dev = platform_get_drvdata(pdev);
unsigned int tmp = 0;
int val;
if (!is_power_of_2(freq))
return -EINVAL;
clk_enable(rtc_clk);
spin_lock_irq(&s3c_rtc_pie_lock);
if (s3c_rtc_cpu_type != TYPE_S3C64XX) {
tmp = readb(s3c_rtc_base + S3C2410_TICNT);
tmp &= S3C2410_TICNT_ENABLE;
}
val = (rtc_dev->max_user_freq / freq) - 1;
if (s3c_rtc_cpu_type == TYPE_S3C2416 || s3c_rtc_cpu_type == TYPE_S3C2443) {
tmp |= S3C2443_TICNT_PART(val);
writel(S3C2443_TICNT1_PART(val), s3c_rtc_base + S3C2443_TICNT1);
if (s3c_rtc_cpu_type == TYPE_S3C2416)
writel(S3C2416_TICNT2_PART(val), s3c_rtc_base + S3C2416_TICNT2);
} else {
tmp |= val;
}
writel(tmp, s3c_rtc_base + S3C2410_TICNT);
spin_unlock_irq(&s3c_rtc_pie_lock);
clk_disable(rtc_clk);
return 0;
}
/* Time read/write */
static int s3c_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
{
unsigned int have_retried = 0;
void __iomem *base = s3c_rtc_base;
clk_enable(rtc_clk);
retry_get_time:
rtc_tm->tm_min = readb(base + S3C2410_RTCMIN);
rtc_tm->tm_hour = readb(base + S3C2410_RTCHOUR);
rtc_tm->tm_mday = readb(base + S3C2410_RTCDATE);
rtc_tm->tm_mon = readb(base + S3C2410_RTCMON);
rtc_tm->tm_year = readb(base + S3C2410_RTCYEAR);
rtc_tm->tm_sec = readb(base + S3C2410_RTCSEC);
/* the only way to work out whether the system was mid-update
* when we read it is to check the second counter, and if it
* is zero, then we re-try the entire read
*/
if (rtc_tm->tm_sec == 0 && !have_retried) {
have_retried = 1;
goto retry_get_time;
}
rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
rtc_tm->tm_year += 100;
dev_dbg(dev, "read time %04d.%02d.%02d %02d:%02d:%02d\n",
1900 + rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday,
rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);
rtc_tm->tm_mon -= 1;
clk_disable(rtc_clk);
return rtc_valid_tm(rtc_tm);
}
static int s3c_rtc_settime(struct device *dev, struct rtc_time *tm)
{
void __iomem *base = s3c_rtc_base;
int year = tm->tm_year - 100;
dev_dbg(dev, "set time %04d.%02d.%02d %02d:%02d:%02d\n",
1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
/* we get around y2k by simply not supporting it */
if (year < 0 || year >= 100) {
dev_err(dev, "rtc only supports 100 years\n");
return -EINVAL;
}
clk_enable(rtc_clk);
writeb(bin2bcd(tm->tm_sec), base + S3C2410_RTCSEC);
writeb(bin2bcd(tm->tm_min), base + S3C2410_RTCMIN);
writeb(bin2bcd(tm->tm_hour), base + S3C2410_RTCHOUR);
writeb(bin2bcd(tm->tm_mday), base + S3C2410_RTCDATE);
writeb(bin2bcd(tm->tm_mon + 1), base + S3C2410_RTCMON);
writeb(bin2bcd(year), base + S3C2410_RTCYEAR);
clk_disable(rtc_clk);
return 0;
}
static int s3c_rtc_getalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_time *alm_tm = &alrm->time;
void __iomem *base = s3c_rtc_base;
unsigned int alm_en;
clk_enable(rtc_clk);
alm_tm->tm_sec = readb(base + S3C2410_ALMSEC);
alm_tm->tm_min = readb(base + S3C2410_ALMMIN);
alm_tm->tm_hour = readb(base + S3C2410_ALMHOUR);
alm_tm->tm_mon = readb(base + S3C2410_ALMMON);
alm_tm->tm_mday = readb(base + S3C2410_ALMDATE);
alm_tm->tm_year = readb(base + S3C2410_ALMYEAR);
alm_en = readb(base + S3C2410_RTCALM);
alrm->enabled = (alm_en & S3C2410_RTCALM_ALMEN) ? 1 : 0;
dev_dbg(dev, "read alarm %d, %04d.%02d.%02d %02d:%02d:%02d\n",
alm_en,
1900 + alm_tm->tm_year, alm_tm->tm_mon, alm_tm->tm_mday,
alm_tm->tm_hour, alm_tm->tm_min, alm_tm->tm_sec);
/* decode the alarm enable field */
if (alm_en & S3C2410_RTCALM_SECEN)
alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
else
alm_tm->tm_sec = -1;
if (alm_en & S3C2410_RTCALM_MINEN)
alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
else
alm_tm->tm_min = -1;
if (alm_en & S3C2410_RTCALM_HOUREN)
alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
else
alm_tm->tm_hour = -1;
if (alm_en & S3C2410_RTCALM_DAYEN)
alm_tm->tm_mday = bcd2bin(alm_tm->tm_mday);
else
alm_tm->tm_mday = -1;
if (alm_en & S3C2410_RTCALM_MONEN) {
alm_tm->tm_mon = bcd2bin(alm_tm->tm_mon);
alm_tm->tm_mon -= 1;
} else {
alm_tm->tm_mon = -1;
}
if (alm_en & S3C2410_RTCALM_YEAREN)
alm_tm->tm_year = bcd2bin(alm_tm->tm_year);
else
alm_tm->tm_year = -1;
clk_disable(rtc_clk);
return 0;
}
static int s3c_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_time *tm = &alrm->time;
void __iomem *base = s3c_rtc_base;
unsigned int alrm_en;
clk_enable(rtc_clk);
dev_dbg(dev, "s3c_rtc_setalarm: %d, %04d.%02d.%02d %02d:%02d:%02d\n",
alrm->enabled,
1900 + tm->tm_year, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
alrm_en = readb(base + S3C2410_RTCALM) & S3C2410_RTCALM_ALMEN;
writeb(0x00, base + S3C2410_RTCALM);
if (tm->tm_sec < 60 && tm->tm_sec >= 0) {
alrm_en |= S3C2410_RTCALM_SECEN;
writeb(bin2bcd(tm->tm_sec), base + S3C2410_ALMSEC);
}
if (tm->tm_min < 60 && tm->tm_min >= 0) {
alrm_en |= S3C2410_RTCALM_MINEN;
writeb(bin2bcd(tm->tm_min), base + S3C2410_ALMMIN);
}
if (tm->tm_hour < 24 && tm->tm_hour >= 0) {
alrm_en |= S3C2410_RTCALM_HOUREN;
writeb(bin2bcd(tm->tm_hour), base + S3C2410_ALMHOUR);
}
dev_dbg(dev, "setting S3C2410_RTCALM to %08x\n", alrm_en);
writeb(alrm_en, base + S3C2410_RTCALM);
s3c_rtc_setaie(dev, alrm->enabled);
clk_disable(rtc_clk);
return 0;
}
static int s3c_rtc_proc(struct device *dev, struct seq_file *seq)
{
unsigned int ticnt;
clk_enable(rtc_clk);
if (s3c_rtc_cpu_type == TYPE_S3C64XX) {
ticnt = readw(s3c_rtc_base + S3C2410_RTCCON);
ticnt &= S3C64XX_RTCCON_TICEN;
} else {
ticnt = readb(s3c_rtc_base + S3C2410_TICNT);
ticnt &= S3C2410_TICNT_ENABLE;
}
seq_printf(seq, "periodic_IRQ\t: %s\n", ticnt ? "yes" : "no");
clk_disable(rtc_clk);
return 0;
}
static const struct rtc_class_ops s3c_rtcops = {
.read_time = s3c_rtc_gettime,
.set_time = s3c_rtc_settime,
.read_alarm = s3c_rtc_getalarm,
.set_alarm = s3c_rtc_setalarm,
.proc = s3c_rtc_proc,
.alarm_irq_enable = s3c_rtc_setaie,
};
static void s3c_rtc_enable(struct platform_device *pdev, int en)
{
void __iomem *base = s3c_rtc_base;
unsigned int tmp;
if (s3c_rtc_base == NULL)
return;
clk_enable(rtc_clk);
if (!en) {
tmp = readw(base + S3C2410_RTCCON);
if (s3c_rtc_cpu_type == TYPE_S3C64XX)
tmp &= ~S3C64XX_RTCCON_TICEN;
tmp &= ~S3C2410_RTCCON_RTCEN;
writew(tmp, base + S3C2410_RTCCON);
if (s3c_rtc_cpu_type != TYPE_S3C64XX) {
tmp = readb(base + S3C2410_TICNT);
tmp &= ~S3C2410_TICNT_ENABLE;
writeb(tmp, base + S3C2410_TICNT);
}
} else {
/* re-enable the device, and check it is ok */
if ((readw(base+S3C2410_RTCCON) & S3C2410_RTCCON_RTCEN) == 0) {
dev_info(&pdev->dev, "rtc disabled, re-enabling\n");
tmp = readw(base + S3C2410_RTCCON);
writew(tmp | S3C2410_RTCCON_RTCEN,
base + S3C2410_RTCCON);
}
if ((readw(base + S3C2410_RTCCON) & S3C2410_RTCCON_CNTSEL)) {
dev_info(&pdev->dev, "removing RTCCON_CNTSEL\n");
tmp = readw(base + S3C2410_RTCCON);
writew(tmp & ~S3C2410_RTCCON_CNTSEL,
base + S3C2410_RTCCON);
}
if ((readw(base + S3C2410_RTCCON) & S3C2410_RTCCON_CLKRST)) {
dev_info(&pdev->dev, "removing RTCCON_CLKRST\n");
tmp = readw(base + S3C2410_RTCCON);
writew(tmp & ~S3C2410_RTCCON_CLKRST,
base + S3C2410_RTCCON);
}
}
clk_disable(rtc_clk);
}
static int s3c_rtc_remove(struct platform_device *dev)
{
s3c_rtc_setaie(&dev->dev, 0);
clk_unprepare(rtc_clk);
rtc_clk = NULL;
return 0;
}
static const struct of_device_id s3c_rtc_dt_match[];
static inline int s3c_rtc_get_driver_data(struct platform_device *pdev)
{
#ifdef CONFIG_OF
struct s3c_rtc_drv_data *data;
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(s3c_rtc_dt_match, pdev->dev.of_node);
data = (struct s3c_rtc_drv_data *) match->data;
return data->cpu_type;
}
#endif
return platform_get_device_id(pdev)->driver_data;
}
static int s3c_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
struct rtc_time rtc_tm;
struct resource *res;
int ret;
int tmp;
dev_dbg(&pdev->dev, "%s: probe=%p\n", __func__, pdev);
/* find the IRQs */
s3c_rtc_tickno = platform_get_irq(pdev, 1);
if (s3c_rtc_tickno < 0) {
dev_err(&pdev->dev, "no irq for rtc tick\n");
return s3c_rtc_tickno;
}
s3c_rtc_alarmno = platform_get_irq(pdev, 0);
if (s3c_rtc_alarmno < 0) {
dev_err(&pdev->dev, "no irq for alarm\n");
return s3c_rtc_alarmno;
}
dev_dbg(&pdev->dev, "s3c2410_rtc: tick irq %d, alarm irq %d\n",
s3c_rtc_tickno, s3c_rtc_alarmno);
/* get the memory region */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
s3c_rtc_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(s3c_rtc_base))
return PTR_ERR(s3c_rtc_base);
rtc_clk = devm_clk_get(&pdev->dev, "rtc");
if (IS_ERR(rtc_clk)) {
dev_err(&pdev->dev, "failed to find rtc clock source\n");
ret = PTR_ERR(rtc_clk);
rtc_clk = NULL;
return ret;
}
clk_prepare_enable(rtc_clk);
/* check to see if everything is setup correctly */
s3c_rtc_enable(pdev, 1);
dev_dbg(&pdev->dev, "s3c2410_rtc: RTCCON=%02x\n",
readw(s3c_rtc_base + S3C2410_RTCCON));
device_init_wakeup(&pdev->dev, 1);
/* register RTC and exit */
rtc = devm_rtc_device_register(&pdev->dev, "s3c", &s3c_rtcops,
THIS_MODULE);
if (IS_ERR(rtc)) {
dev_err(&pdev->dev, "cannot attach rtc\n");
ret = PTR_ERR(rtc);
goto err_nortc;
}
s3c_rtc_cpu_type = s3c_rtc_get_driver_data(pdev);
/* Check RTC Time */
s3c_rtc_gettime(NULL, &rtc_tm);
if (rtc_valid_tm(&rtc_tm)) {
rtc_tm.tm_year = 100;
rtc_tm.tm_mon = 0;
rtc_tm.tm_mday = 1;
rtc_tm.tm_hour = 0;
rtc_tm.tm_min = 0;
rtc_tm.tm_sec = 0;
s3c_rtc_settime(NULL, &rtc_tm);
dev_warn(&pdev->dev, "warning: invalid RTC value so initializing it\n");
}
if (s3c_rtc_cpu_type != TYPE_S3C2410)
rtc->max_user_freq = 32768;
else
rtc->max_user_freq = 128;
if (s3c_rtc_cpu_type == TYPE_S3C2416 || s3c_rtc_cpu_type == TYPE_S3C2443) {
tmp = readw(s3c_rtc_base + S3C2410_RTCCON);
tmp |= S3C2443_RTCCON_TICSEL;
writew(tmp, s3c_rtc_base + S3C2410_RTCCON);
}
platform_set_drvdata(pdev, rtc);
s3c_rtc_setfreq(&pdev->dev, 1);
ret = devm_request_irq(&pdev->dev, s3c_rtc_alarmno, s3c_rtc_alarmirq,
0, "s3c2410-rtc alarm", rtc);
if (ret) {
dev_err(&pdev->dev, "IRQ%d error %d\n", s3c_rtc_alarmno, ret);
goto err_nortc;
}
ret = devm_request_irq(&pdev->dev, s3c_rtc_tickno, s3c_rtc_tickirq,
0, "s3c2410-rtc tick", rtc);
if (ret) {
dev_err(&pdev->dev, "IRQ%d error %d\n", s3c_rtc_tickno, ret);
goto err_nortc;
}
clk_disable(rtc_clk);
return 0;
err_nortc:
s3c_rtc_enable(pdev, 0);
clk_disable_unprepare(rtc_clk);
return ret;
}
#ifdef CONFIG_PM_SLEEP
/* RTC Power management control */
static int ticnt_save, ticnt_en_save;
static bool wake_en;
static int s3c_rtc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
clk_enable(rtc_clk);
/* save TICNT for anyone using periodic interrupts */
if (s3c_rtc_cpu_type == TYPE_S3C64XX) {
ticnt_en_save = readw(s3c_rtc_base + S3C2410_RTCCON);
ticnt_en_save &= S3C64XX_RTCCON_TICEN;
ticnt_save = readl(s3c_rtc_base + S3C2410_TICNT);
} else {
ticnt_save = readb(s3c_rtc_base + S3C2410_TICNT);
}
s3c_rtc_enable(pdev, 0);
if (device_may_wakeup(dev) && !wake_en) {
if (enable_irq_wake(s3c_rtc_alarmno) == 0)
wake_en = true;
else
dev_err(dev, "enable_irq_wake failed\n");
}
clk_disable(rtc_clk);
return 0;
}
static int s3c_rtc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
unsigned int tmp;
clk_enable(rtc_clk);
s3c_rtc_enable(pdev, 1);
if (s3c_rtc_cpu_type == TYPE_S3C64XX) {
writel(ticnt_save, s3c_rtc_base + S3C2410_TICNT);
if (ticnt_en_save) {
tmp = readw(s3c_rtc_base + S3C2410_RTCCON);
writew(tmp | ticnt_en_save,
s3c_rtc_base + S3C2410_RTCCON);
}
} else {
writeb(ticnt_save, s3c_rtc_base + S3C2410_TICNT);
}
if (device_may_wakeup(dev) && wake_en) {
disable_irq_wake(s3c_rtc_alarmno);
wake_en = false;
}
clk_disable(rtc_clk);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(s3c_rtc_pm_ops, s3c_rtc_suspend, s3c_rtc_resume);
#ifdef CONFIG_OF
static struct s3c_rtc_drv_data s3c_rtc_drv_data_array[] = {
[TYPE_S3C2410] = { TYPE_S3C2410 },
[TYPE_S3C2416] = { TYPE_S3C2416 },
[TYPE_S3C2443] = { TYPE_S3C2443 },
[TYPE_S3C64XX] = { TYPE_S3C64XX },
};
static const struct of_device_id s3c_rtc_dt_match[] = {
{
.compatible = "samsung,s3c2410-rtc",
.data = &s3c_rtc_drv_data_array[TYPE_S3C2410],
}, {
.compatible = "samsung,s3c2416-rtc",
.data = &s3c_rtc_drv_data_array[TYPE_S3C2416],
}, {
.compatible = "samsung,s3c2443-rtc",
.data = &s3c_rtc_drv_data_array[TYPE_S3C2443],
}, {
.compatible = "samsung,s3c6410-rtc",
.data = &s3c_rtc_drv_data_array[TYPE_S3C64XX],
},
{},
};
MODULE_DEVICE_TABLE(of, s3c_rtc_dt_match);
#endif
static struct platform_device_id s3c_rtc_driver_ids[] = {
{
.name = "s3c2410-rtc",
.driver_data = TYPE_S3C2410,
}, {
.name = "s3c2416-rtc",
.driver_data = TYPE_S3C2416,
}, {
.name = "s3c2443-rtc",
.driver_data = TYPE_S3C2443,
}, {
.name = "s3c64xx-rtc",
.driver_data = TYPE_S3C64XX,
},
{ }
};
MODULE_DEVICE_TABLE(platform, s3c_rtc_driver_ids);
static struct platform_driver s3c_rtc_driver = {
.probe = s3c_rtc_probe,
.remove = s3c_rtc_remove,
.id_table = s3c_rtc_driver_ids,
.driver = {
.name = "s3c-rtc",
.owner = THIS_MODULE,
.pm = &s3c_rtc_pm_ops,
.of_match_table = of_match_ptr(s3c_rtc_dt_match),
},
};
module_platform_driver(s3c_rtc_driver);
MODULE_DESCRIPTION("Samsung S3C RTC Driver");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c2410-rtc");
/*
* Copyright (c) 2003 Simtec Electronics <linux@simtec.co.uk>
* http://www.simtec.co.uk/products/SWLINUX/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* S3C2410 Internal RTC register definition
*/
#ifndef __ASM_ARCH_REGS_RTC_H
#define __ASM_ARCH_REGS_RTC_H __FILE__
#define S3C2410_RTCREG(x) (x)
#define S3C2410_INTP S3C2410_RTCREG(0x30)
#define S3C2410_INTP_ALM (1 << 1)
#define S3C2410_INTP_TIC (1 << 0)
#define S3C2410_RTCCON S3C2410_RTCREG(0x40)
#define S3C2410_RTCCON_RTCEN (1 << 0)
#define S3C2410_RTCCON_CNTSEL (1 << 2)
#define S3C2410_RTCCON_CLKRST (1 << 3)
#define S3C2443_RTCCON_TICSEL (1 << 4)
#define S3C64XX_RTCCON_TICEN (1 << 8)
#define S3C2410_TICNT S3C2410_RTCREG(0x44)
#define S3C2410_TICNT_ENABLE (1 << 7)
/* S3C2443: tick count is 15 bit wide
* TICNT[6:0] contains upper 7 bits
* TICNT1[7:0] contains lower 8 bits
*/
#define S3C2443_TICNT_PART(x) ((x & 0x7f00) >> 8)
#define S3C2443_TICNT1 S3C2410_RTCREG(0x4C)
#define S3C2443_TICNT1_PART(x) (x & 0xff)
/* S3C2416: tick count is 32 bit wide
* TICNT[6:0] contains bits [14:8]
* TICNT1[7:0] contains lower 8 bits
* TICNT2[16:0] contains upper 17 bits
*/
#define S3C2416_TICNT2 S3C2410_RTCREG(0x48)
#define S3C2416_TICNT2_PART(x) ((x & 0xffff8000) >> 15)
#define S3C2410_RTCALM S3C2410_RTCREG(0x50)
#define S3C2410_RTCALM_ALMEN (1 << 6)
#define S3C2410_RTCALM_YEAREN (1 << 5)
#define S3C2410_RTCALM_MONEN (1 << 4)
#define S3C2410_RTCALM_DAYEN (1 << 3)
#define S3C2410_RTCALM_HOUREN (1 << 2)
#define S3C2410_RTCALM_MINEN (1 << 1)
#define S3C2410_RTCALM_SECEN (1 << 0)
#define S3C2410_ALMSEC S3C2410_RTCREG(0x54)
#define S3C2410_ALMMIN S3C2410_RTCREG(0x58)
#define S3C2410_ALMHOUR S3C2410_RTCREG(0x5c)
#define S3C2410_ALMDATE S3C2410_RTCREG(0x60)
#define S3C2410_ALMMON S3C2410_RTCREG(0x64)
#define S3C2410_ALMYEAR S3C2410_RTCREG(0x68)
#define S3C2410_RTCSEC S3C2410_RTCREG(0x70)
#define S3C2410_RTCMIN S3C2410_RTCREG(0x74)
#define S3C2410_RTCHOUR S3C2410_RTCREG(0x78)
#define S3C2410_RTCDATE S3C2410_RTCREG(0x7c)
#define S3C2410_RTCMON S3C2410_RTCREG(0x84)
#define S3C2410_RTCYEAR S3C2410_RTCREG(0x88)
#endif /* __ASM_ARCH_REGS_RTC_H */