深入AQS原理(我在一开始学的时候就把非公平锁和公平锁给弄混了)

news2024/11/26 11:48:38

谈到并发,我们不得不说AQS(AbstractQueuedSynchronizer),所谓的AQS即是抽象的队列式的同步器,内部定义了很多锁相关的方法,我们熟知的ReentrantLockReentrantReadWriteLockCountDownLatchSemaphore等都是基于AQS来实现的。

我们先看下AQS相关的UML图:

 

在下面自己整理出一张AQS的框架图,供大家参考

 AQS实现原理

AQS中 维护了一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。

这里volatile能够保证多线程下的可见性,当state=1则代表当前对象锁已经被占有,其他线程来加锁时则会失败,加锁失败的线程会被放入一个FIFO的等待队列中,并且会被UNSAFE.park()操作挂起,等待其他获取锁的线程释放锁才能够被唤醒。

另外state的操作都是通过CAS来保证其并发修改的安全性。

具体原理我们可以用一张图来简单概括

 AQS 中提供了很多关于锁的实现方法,

  • getState():获取锁的标志state值
  • setState():设置锁的标志state值
  • tryAcquire(int):独占方式获取锁。尝试获取资源,成功则返回true,失败则返回false。
  • tryRelease(int):独占方式释放锁。尝试释放资源,成功则返回true,失败则返回false。

等等。

目录结构

三个线程(线程一、线程二、线程三)同时来加锁/释放锁

目录如下:

  • 线程一加锁成功时AQS内部实现
  • 线程二/三加锁失败时AQS中等待队列的数据模型
  • 线程一释放锁及线程二获取锁实现原理
  • 通过线程场景来讲解公平锁具体实现原理
  • 通过线程场景来讲解Condition中await()signal()实现原理

这里会通过画图来分析每个线程加锁、释放锁后AQS内部的数据结构和实现原理。

场景分析

线程一加锁成功

如果同时有三个线程并发抢占锁,此时线程一抢占锁成功,线程二线程三抢占锁失败,具体执行流程如下:

此时AQS内部数据为:

 

 线程二线程三加锁失败

 有图可以看出,等待队列中的节点Node是一个双向链表,这里SIGNALNodewaitStatus属性,Node中还有一个nextWaiter属性,这个并未在图中画出来,这个到后面Condition会具体讲解的

这里使用的ReentrantLock非公平锁,线程进来直接利用CAS尝试抢占锁,如果抢占成功state值回被改为1,且设置对象独占锁线程为当前线程

线程二抢占锁失败

可以直接看屎黄色标注的快速理解

我们按照真实场景来分析,线程一抢占锁成功后,state变为1,线程二通过CAS修改state变量必然会失败。此时AQSFIFO(First In First Out 先进先出)队列中数据如图所示:

我们将线程二执行的逻辑一步步拆解来看:

java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire()

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

先看看tryAcquire()的具体实现: java.util.concurrent.locks.ReentrantLock .nonfairTryAcquire():

final boolean nonfairTryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (compareAndSetState(0, acquires)) {
            setExclusiveOwnerThread(current);
            return true;
        }
    }
    else if (current == getExclusiveOwnerThread()) {
        int nextc = c + acquires;
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);
        return true;
    }
    return false;
}

nonfairTryAcquire()方法中首先会获取state的值,如果不为0则说明当前对象的锁已经被其他线程所占有,接着判断占有锁的线程是否为当前线程,如果是则累加state值,这就是可重入锁的具体实现,累加state值,释放锁的时候也要依次递减state

如果state为0,则执行CAS操作,尝试更新state值为1,如果更新成功则代表当前线程加锁成功。

线程二为例,因为线程一已经将state修改为1,所以线程二通过CAS修改state的值不会成功。加锁失败。

线程二执行tryAcquire()后会返回false,接着执行addWaiter(Node.EXCLUSIVE)逻辑,将自己加入到一个FIFO等待队列中。此时等待对内中的tail指针为空,直接调用enq(node)方法将当前线程加入等待队列尾部。(这是个双向链表)

而end方法是这样做的

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) {
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

第一遍循环时tail指针为空,进入if逻辑,使用CAS操作设置head指针,将head指向一个新创建的Node节点。此时AQS中数据:

 

 执行完成之后,headtailt都指向第一个Node元素

接着执行第二遍循环,进入else逻辑,此时已经有了head节点,这里要操作的就是将线程二对应的Node节点挂到head节点后面。此时队列中就有了两个Node节点

 addWaiter()方法执行完后,会返回当前线程创建的节点信息(注意因为线程二是第一个加入等待队列的,所以是经过了两个循环才创建好第二个节点)。继续往后执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg) 逻辑,此时传入的参数线程二对应的Node点信息。

acquireQueued()这个方法会先判断当前传入的Node对应的前置节点是否为head如果是则尝试加锁。加锁成功过则将当前节点设置为head节点,然后空置之前的head节点,方便后续被垃圾回收掉。

果加锁失败或者Node的前置节点不是head节点,就会通过shouldParkAfterFailedAcquire方法 将head节点的waitStatus变为了SIGNAL=-1,最后执行parkAndChecknIterrupt方法,调用LockSupport.park()挂起当前线程

此时AQS中的数据如下图:

此时线程二就静静的待在AQS的等待队列里面了,等着其他线程释放锁来唤醒它

注意每次前一个节点的变化

线程三抢占锁失败

看完了线程二抢占锁失败的分析,那么再来分析线程三抢占锁失败就很简单了

此时等待队列的tail节点指向线程二,进入if逻辑后,通过CAS指令将tail节点重新指向线程三。接着线程三调用enq()方法执行入队操作,和上面线程二执行方式是一致的,入队后会修改线程二对应的Node中的waitStatus=SIGNAL。最后线程三也会被挂起。此时等待队列的数据如图:

 

线程一释放锁

现在来分析下释放锁的过程,首先是线程一释放锁,释放锁后会唤醒head节点的后置节点,也就是我们现在的线程二,具体操作流程如下:

 执行完后等待队列数据如下:

此时线程二已经被唤醒,继续尝试获取锁,如果获取锁失败,则会继续被挂起。如果获取锁成功,则AQS中数据如图。

 线程一释放锁

先tryRelease()方法,这个方法具体实现在ReentrantLock中,如果tryRelease执行成功,则继续判断head节点的waitStatus是否为0,前面我们已经看到过,headwaitStatueSIGNAL(-1),这里就会执行unparkSuccessor()方法来唤醒head的后置节点,也就是我们上面图中线程二对应的Node节点。

执行完ReentrantLock.tryRelease()后,state被设置成0,Lock对象的独占锁被设置为null。此时看下AQS中的数据:

 接着执行java.util.concurrent.locks.AbstractQueuedSynchronizer.unparkSuccessor()方法,唤醒head的后置节点:这里主要是将head节点的waitStatus设置为0。

此时重新将head指针指向线程二对应的Node节点,且使用LockSupport.unpark方法来唤醒线程二

被唤醒的线程二会接着尝试获取锁,用CAS指令修改state数据。 执行完成后可以查看AQS中数据:

此时线程二被唤醒,线程二接着之前被park的地方继续执行,继续执行acquireQueued()方法。 

此时线程二被唤醒,继续执行for循环,判断线程二的前置节点是否为head,如果是则继续使用tryAcquire()方法来尝试获取锁,其实就是使用CAS操作来修改state值,如果修改成功则代表获取锁成功。接着将线程二设置为head节点,然后空置之前的head节点数据,被空置的节点数据等着被垃圾回收

线程二释放锁/线程三加锁 

线程二释放锁时,会唤醒被挂起的线程三,流程和上面大致相同,被唤醒的线程三会再次尝试加锁。

公平锁实现原理

上面所有的加锁场景都是基于非公平锁来实现的,非公平锁ReentrantLock的默认实现,那我们接着来看一下公平锁的实现原理,这里先用一张图来解释公平锁非公平锁的区别:

非公平锁执行流程:

这里我们还是用之前的线程模型来举例子,当线程二释放锁的时候,唤醒被挂起的线程三线程三执行tryAcquire()方法使用CAS操作来尝试修改state值,如果此时又来了一个线程四也来执行加锁操作,同样会执行tryAcquire()方法。

 这种情况就会出现竞争,线程四如果获取锁成功,线程三仍然需要待在等待队列中被挂起。这就是所谓的非公平锁线程三辛辛苦苦排队等到自己获取锁,却眼巴巴的看到线程四插队获取到了锁。

公平锁执行流程:

 

非公平锁公平锁的区别: 非公平锁性能高于公平锁性能。非公平锁可以减少CPU唤醒线程的开销,整体的吞吐效率会高点,CPU也不必取唤醒所有线程,会减少唤起线程的数量

非公平锁性能虽然优于公平锁,但是会存在导致线程饥饿的情况。在最坏的情况下,可能存在某个线程一直获取不到锁。不过相比性能而言,饥饿问题可以暂时忽略,这可能就是ReentrantLock默认创建非公平锁的原因之一了。

Condition实现原理

应知

Condition是在java 1.5中才出现的,它用来替代传统的Objectwait()notify()实现线程间的协作,相比使用Objectwait()notify(),使用Condition中的await()signal()这种方式实现线程间协作更加安全和高效。因此通常来说比较推荐使用Condition

其中AbstractQueueSynchronizer中实现了Condition中的方法,主要对外提供awaite(Object.wait())signal(Object.notify())调用。

Condition Demo示例

/**
 * ReentrantLock 实现源码学习
 * @author 一枝花算不算浪漫
 * @date 2020/4/28 7:20
 */
public class ReentrantLockDemo {
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) {
        Condition condition = lock.newCondition();

        new Thread(() -> {
            lock.lock();
            try {
                System.out.println("线程一加锁成功");
                System.out.println("线程一执行await被挂起");
                condition.await();
                System.out.println("线程一被唤醒成功");
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
                System.out.println("线程一释放锁成功");
            }
        }).start();

        new Thread(() -> {
            lock.lock();
            try {
                System.out.println("线程二加锁成功");
                condition.signal();
                System.out.println("线程二唤醒线程一");
            } finally {
                lock.unlock();
                System.out.println("线程二释放锁成功");
            }
        }).start();
    }
}

 Condition实现原理图解

 线程一执行await()方法:

await()方法中首先调用addConditionWaiter()将当前线程加入到Condition队列中

执行完后我们可以看下Condition队列中的数据:

 这里会用当前线程创建一个Node节点,waitStatusCONDITION。接着会释放该节点的锁,调用之前解析过的release()方法,释放锁后此时会唤醒被挂起的线程二线程二会继续尝试获取锁。

接着调用isOnSyncQueue()方法是判断当前的线程节点是不是在同步队列中,因为上一步已经释放了锁,也就是说此时可能有线程已经获取锁同时可能已经调用了singal()方法,如果已经唤醒,那么就不应该park了,而是退出while方法,从而继续争抢锁。

此时线程一被挂起,线程二获取锁成功。.......................

condition的优势

  • Condition可以精准的对多个不同条件进行控制,wait/notify只能和synchronized关键字一起使用,并且只能唤醒一个或者全部的等待队列;

  • Condition需要使用Lock进行控制,使用的时候要注意lock()后及时的unlock(),Condition有类似于await的机制,因此不会产生加锁方式而产生的死锁出现,同时底层实现的是park/unpark的机制,因此也不会产生先唤醒再挂起的死锁,一句话就是不会产生死锁,但是wait/notify会产生先唤醒再挂起的死锁。

  •  

在理解ReentrantLock的可重入性之前,让我们先回顾一下synchronized关键字的工作方式。

synchronized是Java中的关键字,用于实现线程的同步和互斥访问。当一个线程进入synchronized块或方法时,会尝试获取锁,如果锁已经被其他线程获取,则该线程会被阻塞,直到锁被释放。获取到锁的线程可以执行同步块或方法,并在执行完毕后释放锁。

可重入性(Reentrancy)指的是同一个线程在持有锁的情况下,可以再次获取该锁而不会被阻塞。换句话说,一个线程可以反复地进入它已经拥有的锁所保护的代码块,而不会被自己所持有的锁所阻塞。

ReentrantLock是Java中提供的一种可重入锁的实现。与synchronized关键字不同,ReentrantLock使用显式地加锁和释放锁的方式来实现线程的同步。它允许一个线程在持有锁的情况下,重复地获取锁而不会被阻塞,这就是可重入性的体现。

例如,当线程A获得了ReentrantLock的锁并进入了同步块,此时线程A可以在同步块内部再次调用ReentrantLock的lock()方法,获取相同的锁。这样做是允许的,因为ReentrantLock会记录锁的持有线程和持有次数,只有当线程A完全释放了它所持有的锁,其他线程才能获得该锁。

可重入性的好处在于它简化了编程模型,允许线程在多层嵌套的同步代码中反复获取和释放锁,而不会导致死锁或线程阻塞。这使得ReentrantLock在某些复杂的同步场景中更灵活和可控。

总结而言,ReentrantLock的可重入性允许同一个线程在持有锁的情况下重复获取相同的锁,而不会被阻塞。这种机制简化了编程模型,并提供了更灵活和可控的线程同步机制。

 

本篇文章参考自【深入AQS原理】我画了35张图就是为了让你深入 AQS - 掘金

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/903637.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

13.实现业务功能--板块信息

目录 获取在首页中显示的版块 1. 实现逻辑 2. 创建扩展 Mapper.xml 3. 修改 DAO 4. 创建 Service 接口 5. 实现 Service 接口 6. 生成测试方法 7. 实现 Controller 8. 实现前端页面 在数据库中执行以下 SQL 语句&#xff1a; INSERT INTO t_board (id, name, article…

Dockerfile制作Web应用系统nginx镜像

目录 1.所需实现的具体内容 2.编写Dockerfile Dockerfile文件内容&#xff1a; 默认网页内容&#xff1a; 3.构建镜像 4.现在我们运行一个容器&#xff0c;查看我们的网页是否可访问 5.现在再将我们的镜像打包并上传到镜像仓库 1.所需实现的具体内容 基于centos基础镜像…

GAN:对抗生成网络,前向传播和后巷传播的区别

目录 GAN&#xff1a;对抗生成网络 损失函数 判别器开始波动很大&#xff0c;先调整判别器 生成样本和真实样本的统一&#xff1a;真假难辨​编辑 文字专图片​编辑 头像转表情包​编辑 头像转3D​编辑 后向传播 1. 前向传播&#xff08;forward&#xff09; 2. 反向传播&…

自我管理篇--“90%的简历会被刷掉”这个现象背后的原因

以上简历模板资源的排版可能不是最优&#xff0c;但工作经历可以借鉴 文章目录 一、简历问题出在什么地方二、如何提升简历的质量三、如何避免常见的简历错误四、如何让你的简历脱颖而出五、如何准备面试 为什么90%的简历会被淘汰 在当今竞争激烈的就业市场中&#xff0c;求职者…

OCR扫描仪应该怎么选?

选择OCR扫描仪时&#xff0c;以下几个因素需要考虑&#xff1a; 1. 扫描质量&#xff1a;确保选购的OCR扫描仪能够提供高质量的扫描结果。关注分辨率&#xff08;通常以dpi表示&#xff09;&#xff0c;辨识度和颜色深度等技术指标&#xff0c;以满足您的需求。 2. 扫描速度&a…

电脑报错vcomp100.dll丢失怎样修复?这三个方法可以解决

vcomp100.dll是微软Visual C 2005 Redistributable Package的一部分&#xff0c;它包含了运行某些程序所需的C运行时库。当电脑中的vcomp100.dll文件丢失或损坏时&#xff0c;可能会导致一些程序无法正常运行&#xff0c;甚至出现系统崩溃等问题。 那么&#xff0c;当遇到这样的…

openpnp - 自动换刀的设置

文章目录 openpnp - 自动换刀的设置概述笔记采用的openpnp版本自动换刀库的类型选择自动换刀设置前的注意事项先卸掉吸嘴座上所有的吸嘴删掉所有的吸嘴设置自动换刀的视觉识别设置吸嘴座为自动换刀 - 以N1为例备注补充 - 吸嘴轴差个0.3mm, 就有可能怼坏吸嘴END openpnp - 自动换…

Laravel 框架构造器的排序分组.子查询 JOIN 查询 构造器的增删改 ⑦

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; THINK PHP &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f44…

go1.21.0.windows-amd64.msi

go1.21.0.windows-amd64.msi Windows 10 or greater required.

漏洞指呗-VluFocus靶场专栏-番外篇

漏洞指呗-VluFocus靶场专栏-番外篇奇技淫巧 &#x1f338;struts2漏洞扫描工具&#x1f338;step1 修改ip和端口step2 验证漏洞是否存在step3 执行cmd命令&#xff0c;获取flag &#x1f338;Goby插件工具headshot&#x1f338;step1 输入ip和端口 检测step2 cmd 输入指令 &…

LeetCode 833. Find And Replace in String【字符串,哈希表,模拟】1460

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

stm32单片机开关控制LED灯(中断方式)(proteus电路图)

注意了&#xff1a;一般人都是用按键button实现这个功能&#xff0c;但是我就是喜欢用Switch&#xff0c;然后我就用了Switch&#xff0c;喜欢的朋友欢迎看一看 不同地方在于&#xff1a;这里是interrupt 函数 void EXTI0_IRQHandler(void) {/* USER CODE BEGIN EXTI0_IRQn 0…

【Apollo学习笔记】——规划模块TASK之LANE_CHANGE_DECIDER

文章目录 前言LANE_CHANGE_DECIDER功能简介LANE_CHANGE_DECIDER相关配置LANE_CHANGE_DECIDER总体流程LANE_CHANGE_DECIDER相关子函数PrioritizeChangeLaneUpdateStatusIsClearToChangeLaneHysteresisFilter 参考 前言 在Apollo星火计划学习笔记——Apollo路径规划算法原理与实…

线性代数的学习和整理8: 方阵和行列式相关(草稿-----未完成)

1.4.1 方阵 矩阵里&#xff0c;行数列数的矩阵叫做方阵方阵有很多很好的特殊属性 1.4.2 行列式 行列式是方阵的一种特殊运算如果矩阵行数列数相等&#xff0c;那么这个矩阵是方阵。行列数的计算方式和矩阵的不同只有方阵才有行列式行列式其实是&#xff0c;矩阵变化的一个面…

SLAM-VIO视觉惯性里程计

SLAM 文章目录 SLAM前言IMU与视觉比较单目视觉缺陷&#xff1a;融合IMU优势&#xff1a;相机-IMU标定松耦合紧耦合基于滤波的融合方案&#xff1a;基于优化的融合方案&#xff1a; 前言 VIO&#xff08;visual-inertial odometry&#xff09;即视觉惯性里程计&#xff0c;有时…

第十三章MyBatis高级映射

多对一映射 创建数据表 student是主表class_id关联class表的id class表 student表 创建pojo Class类 Data AllArgsConstructor NoArgsConstructor public class Class {private Long id;private String name;private List<Student> students; }Student类 Data A…

【算法系列篇】滑动窗口

文章目录 前言什么是滑动窗口1.长度最小的子数组1.1 题目要求1.2 做题思路 1.3 Java代码实现2.无重复字符的最长子串2.1 题目要求2.2 做题思路2.3 Java代码实现 3.最大连续1的个数 III3.1 题目要求3.2 做题思路3.3 Java代码实现 4.将x减到0的最小操作数4.1 题目要求4.2 做题思路…

ubuntu上使用osg3.2+osgearth2.9

一、介绍 在ubuntu上使用osgearth加载三维数字地球&#xff0c;首先要有osg和osgearth的库&#xff0c;这些可以直接使用apt-get下载安装&#xff0c;但是版本有些老&#xff0c;如果需要新版本的就需要自己编译。 #查看现有版本 sudo apt-cache madison openscenegraph #安装…

windows上ffmpeg如何录制双屏幕中的一个屏幕上的视频

首先&#xff0c;如何在window上安装ffmpeg自己查找scoop安装ffmpeg. 如题&#xff1a; 如果你有两个屏幕&#xff0c;如何让ffmpeg来录制其中的一个屏幕的视频呢。 很简单&#xff0c;首先你要查看另外一个屏幕的分辨率&#xff1a; 第一步&#xff1a;进入系统中 第二步&am…

VsCode报错:No such file or directory:‘文件名‘

1.问题&#xff1a; 昨天用VsCode直接打开py文件&#xff0c;运行后显示No such file or directory:‘directory’。但directory文件和该py文件在同一目录 2.原因&#xff1a; 直接打开py文件&#xff0c;Vscode看不到同一目录下的其他文件 3.解决方法&#xff1a; 打开文件夹…