【3D激光SLAM】LOAM源代码解析--scanRegistration.cpp

news2025/1/11 14:53:13

系列文章目录

·【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp


写在前面

本系列文章将对LOAM源代码进行讲解,在讲解过程中,涉及到论文中提到的部分,会结合论文以及我自己的理解进行解读,尤其是对于其中坐标变换的部分,将会进行详细的讲解

本来是懒得写的,一个是怕自己以后忘了,另外是我在学习过程中,其实没有感觉哪一个博主能讲解的通篇都能让我很明白,特别是坐标变换部分的代码,所以想着自己学完之后,按照自己的理解,也写一个LOAM解读,希望能对后续学习LOAM的同学们有所帮助。

之后也打算录一个LOAM讲解的视频,大家可以关注一下。


文章目录

  • 系列文章目录
  • 写在前面
  • 整体框架
  • 一、main函数-main()
  • 二、接收IMU的消息-imuHandler()
  • 三、积分IMU的速度与位移-AccumulateIMUShift()
  • 四、接收点云数据-laserCloudHandler()
    • 4.1 预处理与线性插值
    • 4.2 计算曲率
    • 4.3 剔除不好的点
    • 4.4 特征提取
    • 4.5 发布话题
  • 总结


整体框架

LOAM多牛逼就不用多说了,直接开始

先贴一下我详细注释的LOAM代码,在这个版本的代码上加入了我自己的理解。

我觉得最重要也是最恶心的一部分是其中的坐标变换,在代码里面真的看着头大,所以先明确一下坐标系(都是右手坐标系):

  • IMU(IMU坐标系imu):x轴向前,y轴向左,z轴向上
  • LIDAR(激光雷达坐标系l):x轴向前,y轴向左,z轴向上
  • CAMERA(相机坐标系,也可以理解为里程计坐标系c):z轴向前,x轴向左,y轴向上
  • WORLD(世界坐标系w,也可以理解为C第一帧的坐标系init):z轴向前,x轴向左,y轴向上

坐标变换约定: 为了清晰,变换矩阵的形式与《SLAM十四讲中一样》,即: R A _ B R_{A\_B} RA_B表示B坐标系相对于A坐标系的变换,B中一个向量通过 R A _ B R_{A\_B} RA_B可以变换到A中的向量。

首先对照ros的节点图和论文中提到的算法框架来看一下:

在这里插入图片描述
在这里插入图片描述
可以看到节点图和论文中的框架是一一对应的,这几个模块的功能如下:

  • scanRegistration:对原始点云进行预处理,计算曲率,提取特征点
  • laserOdometry:对当前sweep与上一次sweep进行特征匹配,计算一个快速(10Hz)但粗略的位姿估计
  • laserMapping:对当前sweep与一个局部子图进行特征匹配,计算一个慢速(1Hz)比较精确的位姿估计
  • transformMaintenance:对两个模块计算出的位姿进行融合,得到最终的精确地位姿估计

本文首先介绍scanRegistration模块,它的具体功能如下:

  1. 将输入的无序点云转化为按照线号存储的有序点云
  2. 接收IMU数据(如果有的话),并基于匀速运动假设,使用IMU数据进行插值
  3. 计算每个点云的曲率
  4. 剔除论文中提到的不合要求的点
  5. 提取edge point和planar point

一、main函数-main()

main函数很简单,主要是创建了一系列的发布者和订阅者,,然后ros::spin()进行无限循环,其中的主要程序都在回调函数中进行:

  • imuHandler:接收IMU数据进行处理
  • laserCloudHandler:接收激光雷达数据进行处理,这个是该程序的主要函数,包含了算法的核心部分。
int main(int argc, char** argv)
{
  ros::init(argc, argv, "scanRegistration");
  ros::NodeHandle nh;

  ros::Subscriber subLaserCloud = nh.subscribe<sensor_msgs::PointCloud2> 
                                  ("/velodyne_points", 2, laserCloudHandler);

  ros::Subscriber subImu = nh.subscribe<sensor_msgs::Imu> ("/imu/data", 50, imuHandler);

  pubLaserCloud = nh.advertise<sensor_msgs::PointCloud2>
                                 ("/velodyne_cloud_2", 2);

  pubCornerPointsSharp = nh.advertise<sensor_msgs::PointCloud2>
                                        ("/laser_cloud_sharp", 2);

  pubCornerPointsLessSharp = nh.advertise<sensor_msgs::PointCloud2>
                                            ("/laser_cloud_less_sharp", 2);

  pubSurfPointsFlat = nh.advertise<sensor_msgs::PointCloud2>
                                       ("/laser_cloud_flat", 2);

  pubSurfPointsLessFlat = nh.advertise<sensor_msgs::PointCloud2>
                                           ("/laser_cloud_less_flat", 2);

  pubImuTrans = nh.advertise<sensor_msgs::PointCloud2> ("/imu_trans", 5);

  ros::spin();

  return 0;
}

二、接收IMU的消息-imuHandler()

这一部分比较难理解的部分是去除重力影响,主要对这部分进行解释。

IMU坐标系为x轴向前,y轴向左,z轴向上的右手坐标系

首先,接收ROS的IMU话题,分解出PRY角,IMU系相对于全局坐标系的变换是XYZ的变换顺序,即,旋转矩阵 R w _ i m u = R z R y R x R_{w\_imu} = R_z R_y R_x Rw_imu=RzRyRx,重力为全局坐标系中一个向量 g w = [ 0 , 0 , 9.81 ] g_w=[0,0,9.81] gw=[0,0,9.81],需要先变换到IMU坐标系,有如下关系:
g i m u = R i m u _ w g w = R w _ i m u − 1 g w = R − x R − y R − z ∗ g w g_{imu} = R_{imu\_w} g_w = R_{w\_imu}^{-1} g_w = R_{-x} R_{-y} R_{-z} * g_w gimu=Rimu_wgw=Rw_imu1gw=RxRyRzgw
计算出来的结果为:
g i m u = [ − 9.8 s i n β , 9.8 s i n α c o s β , 9.8 c o s α c o s β ] g_{imu} = [-9.8sin\beta,9.8sin\alpha cos\beta,9.8cos\alpha cos\beta] gimu=[9.8sinβ,9.8sinαcosβ,9.8cosαcosβ]
而我们测量出来的加速度值是收到重力影响的,可以表述为:
a i m u m e a s u r e = a i m u t r u e + g i m u a_{imu}^{measure} = a_{imu}^{true} + g_{imu} aimumeasure=aimutrue+gimu
所以加速度真值为:
a i m u t r u e = a i m u m e a s u r e − g i m u a_{imu}^{true} = a_{imu}^{measure} - g_{imu} aimutrue=aimumeasuregimu
最后进行坐标系交换,变换z轴向前,x轴向左,y轴向上,就有了代码中的样子。

注意这里没有进行坐标变换,只是换了一下坐标轴的位置,是为了后面计算全局坐标系下的速度和位移积分

//接收imu消息,imu坐标系为x轴向前,y轴向左,z轴向上的右手坐标系
void imuHandler(const sensor_msgs::Imu::ConstPtr& imuIn)
{
  double roll, pitch, yaw;
  tf::Quaternion orientation;
  //convert Quaternion msg to Quaternion
  tf::quaternionMsgToTF(imuIn->orientation, orientation);
  //This will get the roll pitch and yaw from the matrix about fixed axes X, Y, Z respectively. That's R = Rz(yaw)*Ry(pitch)*Rx(roll).
  //Here roll pitch yaw is in the global(init) frame
  tf::Matrix3x3(orientation).getRPY(roll, pitch, yaw);

  //减去重力的影响,求出xyz方向的加速度实际值,并进行坐标轴交换,统一到z轴向前,x轴向左的右手坐标系, 交换过后RPY对应fixed axes ZXY(RPY---ZXY)。Now R = Ry(yaw)*Rx(pitch)*Rz(roll).
  float accX = imuIn->linear_acceleration.y - sin(roll) * cos(pitch) * 9.81;
  float accY = imuIn->linear_acceleration.z - cos(roll) * cos(pitch) * 9.81;
  float accZ = imuIn->linear_acceleration.x + sin(pitch) * 9.81;

  //循环移位效果,形成环形数组
  imuPointerLast = (imuPointerLast + 1) % imuQueLength;     // const int imuQueLength = 200

  imuTime[imuPointerLast] = imuIn->header.stamp.toSec();
  imuRoll[imuPointerLast] = roll;
  imuPitch[imuPointerLast] = pitch;
  imuYaw[imuPointerLast] = yaw;
  imuAccX[imuPointerLast] = accX;
  imuAccY[imuPointerLast] = accY;
  imuAccZ[imuPointerLast] = accZ;

  AccumulateIMUShift();
}

三、积分IMU的速度与位移-AccumulateIMUShift()

首先明确一点:在进行了坐标系转换(转换成了z轴向前,x轴向左,y轴向上)后,原来的当前帧(局部坐标系)到世界坐标系(全局坐标系)的变换变成了 R Z X Y = R y R x R z R_{ZXY} = R_y R_x R_z RZXY=RyRxRz

现在的加速度还是在局部坐标系(imu)中,现在需要将其变换到世界坐标系,然后与之前的速度、位移进行积分。
a w = R y R x R z ∗ a i m u a_w = R_y R_x R_z * a_{imu} aw=RyRxRzaimu
下面就是根据初中学的公式进行积分:
x i = x i − 1 + v i − 1 ∗ Δ t + 1 2 ∗ a i ∗ Δ t 2 v i = v i − 1 + a i ∗ Δ t x_i = x_{i-1} + v_{i-1} * \Delta t + \frac{1}{2} * a_i * \Delta t^2 \\ v_i = v_{i-1} + a_i * \Delta t xi=xi1+vi1Δt+21aiΔt2vi=vi1+aiΔt

//积分速度与位移
void AccumulateIMUShift()
{
  float roll = imuRoll[imuPointerLast];
  float pitch = imuPitch[imuPointerLast];
  float yaw = imuYaw[imuPointerLast];
  // accX、accY、acc都是世界坐标系下
  float accX = imuAccX[imuPointerLast];
  float accY = imuAccY[imuPointerLast];
  float accZ = imuAccZ[imuPointerLast];

  //将当前时刻的加速度值绕交换过的ZXY固定轴(原XYZ)分别旋转(roll, pitch, yaw)角,转换得到世界坐标系下的加速度值(right hand rule)
  //绕z轴旋转(roll)
  float x1 = cos(roll) * accX - sin(roll) * accY;
  float y1 = sin(roll) * accX + cos(roll) * accY;
  float z1 = accZ;
  //绕x轴旋转(pitch)
  float x2 = x1;
  float y2 = cos(pitch) * y1 - sin(pitch) * z1;
  float z2 = sin(pitch) * y1 + cos(pitch) * z1;
  //绕y轴旋转(yaw)
  accX = cos(yaw) * x2 + sin(yaw) * z2;
  accY = y2;
  accZ = -sin(yaw) * x2 + cos(yaw) * z2;

  //上一个imu点
  int imuPointerBack = (imuPointerLast + imuQueLength - 1) % imuQueLength;
  //上一个点到当前点所经历的时间,即计算imu测量周期
  double timeDiff = imuTime[imuPointerLast] - imuTime[imuPointerBack];
  //要求imu的频率至少比lidar高,这样的imu信息才使用,后面校正也才有意义
  if (timeDiff < scanPeriod) {//(隐含从静止开始运动)
    //求每个imu时间点的位移与速度,两点之间视为匀加速直线运动
    imuShiftX[imuPointerLast] = imuShiftX[imuPointerBack] + imuVeloX[imuPointerBack] * timeDiff 
                              + accX * timeDiff * timeDiff / 2;
    imuShiftY[imuPointerLast] = imuShiftY[imuPointerBack] + imuVeloY[imuPointerBack] * timeDiff 
                              + accY * timeDiff * timeDiff / 2;
    imuShiftZ[imuPointerLast] = imuShiftZ[imuPointerBack] + imuVeloZ[imuPointerBack] * timeDiff 
                              + accZ * timeDiff * timeDiff / 2;

    imuVeloX[imuPointerLast] = imuVeloX[imuPointerBack] + accX * timeDiff;
    imuVeloY[imuPointerLast] = imuVeloY[imuPointerBack] + accY * timeDiff;
    imuVeloZ[imuPointerLast] = imuVeloZ[imuPointerBack] + accZ * timeDiff;
  }
}

四、接收点云数据-laserCloudHandler()

4.1 预处理与线性插值

首先接收到当前sweep的点云数据后,先计算一下点云的起始角度startOri和终止角度endOri,对应于下图的α角,然后将结束角与起始角差值控制在(PI,3*PI)范围,允许lidar不是一个圆周扫描。
在这里插入图片描述
下面这个for循环做了这些事情:

  1. 将点云从雷达坐标系转换到相机坐标系(坐标系转换,不是坐标变换)
  2. 计算每个点的俯仰角,对应于上图的ω角,用于计算scanID
  3. 如果收到IMU数据,使用IMU进行插值
  4. 计算了每个点由于加减速产生的位移和速度畸变
  5. 将每个点变换到当前sweep的初始时刻start坐标系

要进行说明的部分如下:

点云强度保存:

point.intensity = scanID + scanPeriod * relTime;

这里点云强度值保存的格式为“线号 + 扫描周期(10Hz=0.1s) * 点云相对角度”,这样保存的好处就是:对强度值取整,可以得到线号;强度值-取整,可以计算出相对角度。

IMU去畸变:

 if (imuPointerLast >= 0) {//如果收到IMU数据,使用IMU进行插值
      float pointTime = relTime * scanPeriod;//计算点的周期时间
      //寻找是否有点云的时间戳小于IMU的时间戳的IMU位置:imuPointerFront
      while (imuPointerFront != imuPointerLast) {
        if (timeScanCur + pointTime < imuTime[imuPointerFront]) {
          break;
        }
        imuPointerFront = (imuPointerFront + 1) % imuQueLength;
      }
......

这里的imuPointerLast表示最新收到IMU数据的位置,imuPointerFront表示时间戳刚好大于当前点云时间戳的位置,在对点云进行插值时,需要使用imuPointerFront和它之前一个位置imuPointerBack。

当找到了一个满足要求的imuPointerFront,就是用下式进行插值:
v c u r r e n t = v i − 1 + ( v i − v i − 1 ) ∗ t c u r r e n t − t i − 1 t i − t i − 1 v_{current} = v_{i-1} + (v_i-v_{i-1})*\frac{t_{current}-t_{i-1}}{t_i-t_{i-1}} vcurrent=vi1+(vivi1)titi1tcurrentti1
文章中的式子如下:本质上是一样的:
v c u r r e n t = v i ∗ t c u r r e n t − t i − 1 t i − t i − 1 + v i − 1 ∗ t i − t c u r r e n t t i − t i − 1 v_{current} = v_i * \frac{t_{current}-t_{i-1}}{t_i-t_{i-1}} + v_{i-1} * \frac{t_i - t_{current}}{t_i-t_{i-1}} vcurrent=vititi1tcurrentti1+vi1titi1titcurrent
第一个点云的数值都保存在以Start结尾的变量中。

ShiftToStartIMU(pointTime)函数:

这个函数用来计算相对于当前sweep初始时刻 由于加减速产生的位移畸变,注意这里的变量都是在全局坐标系下计算的 当前时刻相对于该sweep初始时刻的畸变量。

然后将畸变量由全局坐标系(init)变换到当前sweep的初始时刻坐标系(start),而现在我们已知的量RPY角所构成的变换为:
R i n i t _ s t a r t = R y R x R z R_{init\_start} = R_y R_x R_z Rinit_start=RyRxRz
所以这里需要的变换为:
R s t a r t _ i n i t = R i n i t _ s t a r t − 1 = R − z R − x R − y R_{start\_init} = R_{init\_start}^{-1} = R_{-z} R_{-x} R_{-y} Rstart_init=Rinit_start1=RzRxRy
这样得到了如下代码。

//计算局部(start)坐标系下点云中的点相对第一个开始点的由于加减速运动产生的位移畸变
void ShiftToStartIMU(float pointTime)
{
  //计算相对于第一个点由于加减速产生的畸变位移(全局(init)坐标系下畸变位移量delta_Tg)
  //imuShiftFromStartCur = imuShiftCur - (imuShiftStart + imuVeloStart * pointTime)
  imuShiftFromStartXCur = imuShiftXCur - imuShiftXStart - imuVeloXStart * pointTime;
  imuShiftFromStartYCur = imuShiftYCur - imuShiftYStart - imuVeloYStart * pointTime;
  imuShiftFromStartZCur = imuShiftZCur - imuShiftZStart - imuVeloZStart * pointTime;

  /********************************************************************************
  delta_Tstart = Rz(roll).inverse * Rx(pitch).inverse * Ry(yaw).inverse * delta_Tg
  transfrom from the global(init) frame to the local(start) frame
  *********************************************************************************/

  //绕y轴旋转(-imuYawStart),即Ry(yaw).inverse
  float x1 = cos(imuYawStart) * imuShiftFromStartXCur - sin(imuYawStart) * imuShiftFromStartZCur;
  float y1 = imuShiftFromStartYCur;
  float z1 = sin(imuYawStart) * imuShiftFromStartXCur + cos(imuYawStart) * imuShiftFromStartZCur;

  //绕x轴旋转(-imuPitchStart),即Rx(pitch).inverse
  float x2 = x1;
  float y2 = cos(imuPitchStart) * y1 + sin(imuPitchStart) * z1;
  float z2 = -sin(imuPitchStart) * y1 + cos(imuPitchStart) * z1;

  //绕z轴旋转(-imuRollStart),即Rz(pitch).inverse
  imuShiftFromStartXCur = cos(imuRollStart) * x2 + sin(imuRollStart) * y2;
  imuShiftFromStartYCur = -sin(imuRollStart) * x2 + cos(imuRollStart) * y2;
  imuShiftFromStartZCur = z2;
}

VeloToStartIMU()函数:
这个函数与上面函数的功能一致,是将计算由于加减速产生的速度畸变,并变换到start坐标系中,不再赘述。

//计算局部(start)坐标系下点云中的点相对第一个开始点由于加减速产生的的速度畸变(增量)
void VeloToStartIMU()
{
  //计算相对于第一个点由于加减速产生的畸变速度(全局(init)坐标系下畸变速度增量delta_Vg)
  imuVeloFromStartXCur = imuVeloXCur - imuVeloXStart;
  imuVeloFromStartYCur = imuVeloYCur - imuVeloYStart;
  imuVeloFromStartZCur = imuVeloZCur - imuVeloZStart;

  /********************************************************************************
    delta_Vstart = Rz(pitch).inverse * Rx(pitch).inverse * Ry(yaw).inverse * delta_Vg
    transfrom from the global(init) frame to the local(start) frame
  *********************************************************************************/
  
  //绕y轴旋转(-imuYawStart),即Ry(yaw).inverse
  float x1 = cos(imuYawStart) * imuVeloFromStartXCur - sin(imuYawStart) * imuVeloFromStartZCur;
  float y1 = imuVeloFromStartYCur;
  float z1 = sin(imuYawStart) * imuVeloFromStartXCur + cos(imuYawStart) * imuVeloFromStartZCur;

  //绕x轴旋转(-imuPitchStart),即Rx(pitch).inverse
  float x2 = x1;
  float y2 = cos(imuPitchStart) * y1 + sin(imuPitchStart) * z1;
  float z2 = -sin(imuPitchStart) * y1 + cos(imuPitchStart) * z1;

  //绕z轴旋转(-imuRollStart),即Rz(pitch).inverse
  imuVeloFromStartXCur = cos(imuRollStart) * x2 + sin(imuRollStart) * y2;
  imuVeloFromStartYCur = -sin(imuRollStart) * x2 + cos(imuRollStart) * y2;
  imuVeloFromStartZCur = z2;
}

TransformToStartIMU(&point)函数:
这个函数对应于论文中提到的,将当前sweep中的所有点云都变换到初始时刻,得到的就是下图中的 P k ˉ \bar{P_k} Pkˉ.

在这里插入图片描述
我们现在已知了当前时刻的PRY角,那么可以构成当前时刻坐标系(curr坐标系)相对于世界坐标系(init)的变换:
R i n i t c u r r = R y R x R z R_{init_curr} = R_y R_x R_z Rinitcurr=RyRxRz
同样,已知了该sweep初始时刻的PRY角,可以构成世界坐标系init到该sweep的坐标变换,和上面畸变量变换类似:
R s t a r t _ i n i t = R i n i t _ s t a r t − 1 = R − z R − x R − y R_{start\_init} = R_{init\_start}^{-1} = R_{-z} R_{-x} R_{-y} Rstart_init=Rinit_start1=RzRxRy
那么最终的变换为:
p s t a r t = R s t a r t _ i n i t ∗ R i n i t _ c u r r ∗ p c u r r p_{start} = R_{start\_init} * R_{init\_curr} * p_{curr} pstart=Rstart_initRinit_currpcurr
最后再加上上面计算出的由于加减速产生的位移畸变量,就得到了如下代码。

//将当前时刻curr坐标系下的的点云变换到世界坐标系init,然后在变换到当前帧的初始时刻start坐标系下
void TransformToStartIMU(PointType *p)
{
  /********************************************************************************
    Pinit = Ry * Rx * Rz * Pcurr
    transform current camara(curr) frame point to the global(init) frame
  *********************************************************************************/
  //绕z轴旋转(imuRollCur)
  float x1 = cos(imuRollCur) * p->x - sin(imuRollCur) * p->y;
  float y1 = sin(imuRollCur) * p->x + cos(imuRollCur) * p->y;
  float z1 = p->z;

  //绕x轴旋转(imuPitchCur)
  float x2 = x1;
  float y2 = cos(imuPitchCur) * y1 - sin(imuPitchCur) * z1;
  float z2 = sin(imuPitchCur) * y1 + cos(imuPitchCur) * z1;

  //绕y轴旋转(imuYawCur)
  float x3 = cos(imuYawCur) * x2 + sin(imuYawCur) * z2;
  float y3 = y2;
  float z3 = -sin(imuYawCur) * x2 + cos(imuYawCur) * z2;

  /********************************************************************************
    Pstart = Rz(pitch).inverse * Rx(pitch).inverse * Ry(yaw).inverse * Pinit
    transfrom global(init) points to the local(start) frame
  *********************************************************************************/
  
  //绕y轴旋转(-imuYawStart)
  float x4 = cos(imuYawStart) * x3 - sin(imuYawStart) * z3;
  float y4 = y3;
  float z4 = sin(imuYawStart) * x3 + cos(imuYawStart) * z3;

  //绕x轴旋转(-imuPitchStart)
  float x5 = x4;
  float y5 = cos(imuPitchStart) * y4 + sin(imuPitchStart) * z4;
  float z5 = -sin(imuPitchStart) * y4 + cos(imuPitchStart) * z4;

  //绕z轴旋转(-imuRollStart),然后叠加平移量
  p->x = cos(imuRollStart) * x5 + sin(imuRollStart) * y5 + imuShiftFromStartXCur;
  p->y = -sin(imuRollStart) * x5 + cos(imuRollStart) * y5 + imuShiftFromStartYCur;
  p->z = z5 + imuShiftFromStartZCur;
}

当上面这些操纵都做完之后,将得到的start坐标系下去畸变的点,放入按scanID存储的点云容器laserCloudScans,所有代码如下:

//接收点云数据,velodyne雷达坐标系安装为x轴向前,y轴向左,z轴向上的右手坐标系
void laserCloudHandler(const sensor_msgs::PointCloud2ConstPtr& laserCloudMsg)
{
  if (!systemInited) {//丢弃前20个点云数据
    systemInitCount++;
    if (systemInitCount >= systemDelay) {
      systemInited = true;
    }
    return;
  }

  //记录每个scan有曲率的点的开始和结束索引
  std::vector<int> scanStartInd(N_SCANS, 0);
  std::vector<int> scanEndInd(N_SCANS, 0);
  
  //当前sweep的时间
  double timeScanCur = laserCloudMsg->header.stamp.toSec();
  pcl::PointCloud<pcl::PointXYZ> laserCloudIn;
  //消息转换成pcl数据存放
  pcl::fromROSMsg(*laserCloudMsg, laserCloudIn);
  std::vector<int> indices;
  //移除空点
  pcl::removeNaNFromPointCloud(laserCloudIn, laserCloudIn, indices);
  //点云点的数量
  int cloudSize = laserCloudIn.points.size();
  //lidar scan开始点的旋转角,atan2范围[-pi,+pi],计算旋转角时取负号是因为velodyne是顺时针旋转
  float startOri = -atan2(laserCloudIn.points[0].y, laserCloudIn.points[0].x);
  //lidar scan结束点的旋转角,加2*pi使点云旋转周期为2*pi
  float endOri = -atan2(laserCloudIn.points[cloudSize - 1].y,
                        laserCloudIn.points[cloudSize - 1].x) + 2 * M_PI;

  //结束方位角与开始方位角差值控制在(PI,3*PI)范围,允许lidar不是一个圆周扫描
  //正常情况下在这个范围内:pi < endOri - startOri < 3*pi,异常则修正
  if (endOri - startOri > 3 * M_PI) {
    endOri -= 2 * M_PI;
  } else if (endOri - startOri < M_PI) {
    endOri += 2 * M_PI;
  }
  //lidar扫描线是否旋转过半
  bool halfPassed = false;
  int count = cloudSize;
  PointType point;
  std::vector<pcl::PointCloud<PointType> > laserCloudScans(N_SCANS);
  
  /* 这个for循环做了这些事情:
   *    1.将点云从雷达坐标系转换到相机坐标系
   *    2.计算每个点的俯仰角,用于计算scanID
   *    3.如果收到IMU数据,使用IMU进行插值
   *    4.计算了每个点由于加减速产生的位移和速度畸变
   *    5.将每个点变换到当前sweep的初始时刻start坐标系
  */
  for (int i = 0; i < cloudSize; i++) {
    //把雷达坐标系(前-左-上)中的点云转换到相机坐标系(左上前) X->Z Y->X Z->Y
    point.x = laserCloudIn.points[i].y;
    point.y = laserCloudIn.points[i].z;
    point.z = laserCloudIn.points[i].x;

    //计算点的仰角(根据lidar文档垂直角计算公式),根据仰角排列激光线号,velodyne每两个scan之间间隔2度
    float angle = atan(point.y / sqrt(point.x * point.x + point.z * point.z)) * 180 / M_PI;
    int scanID;
    //仰角四舍五入(加减0.5截断效果等于四舍五入)
    int roundedAngle = int(angle + (angle<0.0?-0.5:+0.5)); 
    if (roundedAngle > 0){
      scanID = roundedAngle;
    }
    else {
      scanID = roundedAngle + (N_SCANS - 1);
    }
    //过滤点,只挑选[-15度,+15度]范围内的点,scanID属于[0,15]
    if (scanID > (N_SCANS - 1) || scanID < 0 ){
      count--;
      continue;
    }

    //该点的旋转角
    float ori = -atan2(point.x, point.z);
    if (!halfPassed) {//根据扫描线是否旋转过半选择与起始位置还是终止位置进行差值计算,从而进行补偿
        //确保-pi/2 < ori - startOri < 3*pi/2
      if (ori < startOri - M_PI / 2) {
        ori += 2 * M_PI;
      } else if (ori > startOri + M_PI * 3 / 2) {
        ori -= 2 * M_PI;
      }

      if (ori - startOri > M_PI) {
        halfPassed = true;
      }
    } else {
      ori += 2 * M_PI;

      //确保-3*pi/2 < ori - endOri < pi/2
      if (ori < endOri - M_PI * 3 / 2) {
        ori += 2 * M_PI;
      } else if (ori > endOri + M_PI / 2) {
        ori -= 2 * M_PI;
      } 
    }

    //-0.5 < relTime < 1.5(点旋转的角度与整个周期旋转角度的比率, 即点云中点的相对时间)
    float relTime = (ori - startOri) / (endOri - startOri);
    //点强度=线号+点相对时间(即一个整数+一个小数,整数部分是线号,小数部分是该点的相对时间),匀速扫描:根据当前扫描的角度和扫描周期计算相对扫描起始位置的时间
    point.intensity = scanID + scanPeriod * relTime;

    if (imuPointerLast >= 0) {//如果收到IMU数据,使用IMU进行插值
      float pointTime = relTime * scanPeriod;//计算点的周期时间
      //寻找是否有点云的时间戳小于IMU的时间戳的IMU位置:imuPointerFront
      while (imuPointerFront != imuPointerLast) {
        if (timeScanCur + pointTime < imuTime[imuPointerFront]) {
          break;
        }
        imuPointerFront = (imuPointerFront + 1) % imuQueLength;
      }

      if (timeScanCur + pointTime > imuTime[imuPointerFront]) {//没找到,此时imuPointerFront==imtPointerLast,只能以当前收到的最新的IMU的速度,位移,欧拉角作为当前点的速度,位移,欧拉角使用
        imuRollCur = imuRoll[imuPointerFront];
        imuPitchCur = imuPitch[imuPointerFront];
        imuYawCur = imuYaw[imuPointerFront];

        imuVeloXCur = imuVeloX[imuPointerFront];
        imuVeloYCur = imuVeloY[imuPointerFront];
        imuVeloZCur = imuVeloZ[imuPointerFront];

        imuShiftXCur = imuShiftX[imuPointerFront];
        imuShiftYCur = imuShiftY[imuPointerFront];
        imuShiftZCur = imuShiftZ[imuPointerFront];
      } else {//找到了点云时间戳小于IMU时间戳的IMU位置,则该点必处于imuPointerBack和imuPointerFront之间,据此线性插值,计算点云点的速度,位移和欧拉角
        int imuPointerBack = (imuPointerFront + imuQueLength - 1) % imuQueLength;   // imuPointerBack是imuPointerFront的上一个位置
        //按时间距离计算权重分配比率,也即线性插值
        float ratioFront = (timeScanCur + pointTime - imuTime[imuPointerBack]) 
                         / (imuTime[imuPointerFront] - imuTime[imuPointerBack]);
        float ratioBack = (imuTime[imuPointerFront] - timeScanCur - pointTime) 
                        / (imuTime[imuPointerFront] - imuTime[imuPointerBack]);

        imuRollCur = imuRoll[imuPointerFront] * ratioFront + imuRoll[imuPointerBack] * ratioBack;
        imuPitchCur = imuPitch[imuPointerFront] * ratioFront + imuPitch[imuPointerBack] * ratioBack;
        if (imuYaw[imuPointerFront] - imuYaw[imuPointerBack] > M_PI) {
          imuYawCur = imuYaw[imuPointerFront] * ratioFront + (imuYaw[imuPointerBack] + 2 * M_PI) * ratioBack;
        } else if (imuYaw[imuPointerFront] - imuYaw[imuPointerBack] < -M_PI) {
          imuYawCur = imuYaw[imuPointerFront] * ratioFront + (imuYaw[imuPointerBack] - 2 * M_PI) * ratioBack;
        } else {
          imuYawCur = imuYaw[imuPointerFront] * ratioFront + imuYaw[imuPointerBack] * ratioBack;
        }

        //本质:imuVeloXCur = imuVeloX[imuPointerback] + (imuVelX[imuPointerFront]-imuVelX[imuPoniterBack])*ratioFront
        imuVeloXCur = imuVeloX[imuPointerFront] * ratioFront + imuVeloX[imuPointerBack] * ratioBack;
        imuVeloYCur = imuVeloY[imuPointerFront] * ratioFront + imuVeloY[imuPointerBack] * ratioBack;
        imuVeloZCur = imuVeloZ[imuPointerFront] * ratioFront + imuVeloZ[imuPointerBack] * ratioBack;

        imuShiftXCur = imuShiftX[imuPointerFront] * ratioFront + imuShiftX[imuPointerBack] * ratioBack;
        imuShiftYCur = imuShiftY[imuPointerFront] * ratioFront + imuShiftY[imuPointerBack] * ratioBack;
        imuShiftZCur = imuShiftZ[imuPointerFront] * ratioFront + imuShiftZ[imuPointerBack] * ratioBack;
      }

      if (i == 0) {//如果是第一个点,记住点云起始位置的速度,位移,欧拉角
        imuRollStart = imuRollCur;
        imuPitchStart = imuPitchCur;
        imuYawStart = imuYawCur;

        imuVeloXStart = imuVeloXCur;
        imuVeloYStart = imuVeloYCur;
        imuVeloZStart = imuVeloZCur;

        imuShiftXStart = imuShiftXCur;
        imuShiftYStart = imuShiftYCur;
        imuShiftZStart = imuShiftZCur;
      } else {
        ShiftToStartIMU(pointTime);
        VeloToStartIMU();
        TransformToStartIMU(&point);//将当前时刻curr坐标系下的的点云变换到世界坐标系init,然后在变换到当前帧的初始时刻start坐标系下
      }
    }
    laserCloudScans[scanID].push_back(point);//将每个补偿矫正的点放入对应线号的容器
  }

4.2 计算曲率

这一部分对应论文中提到的曲率计算公式:
c = 1 ∣ S ∣ ⋅ ∣ ∣ X ( k , i ) L ∣ ∣ ∣ ∣ ∑ j ∈ S , j ≠ i ( X ( k , i ) L − X ( k , j ) L ) ∣ ∣ c = \frac{1}{|S|·||X_{(k,i)}^L||} ||\sum _{j \in S, j\ne i} (X_{(k,i)}^L - X_{(k,j)}^L)|| c=S∣∣X(k,i)L∣∣1∣∣jS,j=i(X(k,i)LX(k,j)L)∣∣
X ( k , i ) L X_{(k,i)}^L X(k,i)L是第i个点云的位置, X ( k , j ) L X_{(k,j)}^L X(k,j)L X ( k , i ) L X_{(k,i)}^L X(k,i)L左右两边各5个点,注意它们两个都是矢量,那么 ( X ( k , i ) L − X ( k , j ) L ) (X_{(k,i)}^L - X_{(k,j)}^L) (X(k,i)LX(k,j)L)就是一个 X ( k , i ) L X_{(k,i)}^L X(k,i)L指向 X ( k , j ) L X_{(k,j)}^L X(k,j)L的向量。

在这里插入图片描述
如上图所示,如果一个点是edge point,那么向量求和后得到结果的模很大;如果一个点是planar point那么与两侧五个向量求和后结果是0,通过这种方式,区分特征点。

求解完所有点的曲率后,scanStartInd[]和scanEndInd[]数组用于记录下每个scanID有曲率的起始点和终止点的索引。

//获得有效范围内的点的数量
  cloudSize = count;

  //这里就按照scanID变成了有序点云
  pcl::PointCloud<PointType>::Ptr laserCloud(new pcl::PointCloud<PointType>());
  //将所有的点按照线号从小到大放入一个容器
  for (int i = 0; i < N_SCANS; i++) {
    *laserCloud += laserCloudScans[i];
  }
  int scanCount = -1;
  //使用每个点的前后五个点计算曲率,因此前五个与最后五个点跳过
  for (int i = 5; i < cloudSize - 5; i++) {
    float diffX = laserCloud->points[i - 5].x + laserCloud->points[i - 4].x 
                + laserCloud->points[i - 3].x + laserCloud->points[i - 2].x 
                + laserCloud->points[i - 1].x - 10 * laserCloud->points[i].x 
                + laserCloud->points[i + 1].x + laserCloud->points[i + 2].x
                + laserCloud->points[i + 3].x + laserCloud->points[i + 4].x
                + laserCloud->points[i + 5].x;
    float diffY = laserCloud->points[i - 5].y + laserCloud->points[i - 4].y 
                + laserCloud->points[i - 3].y + laserCloud->points[i - 2].y 
                + laserCloud->points[i - 1].y - 10 * laserCloud->points[i].y 
                + laserCloud->points[i + 1].y + laserCloud->points[i + 2].y
                + laserCloud->points[i + 3].y + laserCloud->points[i + 4].y
                + laserCloud->points[i + 5].y;
    float diffZ = laserCloud->points[i - 5].z + laserCloud->points[i - 4].z 
                + laserCloud->points[i - 3].z + laserCloud->points[i - 2].z 
                + laserCloud->points[i - 1].z - 10 * laserCloud->points[i].z 
                + laserCloud->points[i + 1].z + laserCloud->points[i + 2].z
                + laserCloud->points[i + 3].z + laserCloud->points[i + 4].z
                + laserCloud->points[i + 5].z;
    //曲率计算
    cloudCurvature[i] = diffX * diffX + diffY * diffY + diffZ * diffZ;
    //记录曲率点的索引
    cloudSortInd[i] = i;
    //初始时,点全未筛选过
    cloudNeighborPicked[i] = 0;
    //初始化为less flat点
    cloudLabel[i] = 0;

    //每个scan,只有第一个符合的点会进来,因为每个scan的点都在一起存放
    if (int(laserCloud->points[i].intensity) != scanCount) {
      scanCount = int(laserCloud->points[i].intensity);//控制每个scan只进入第一个点

      //曲率只取同一个scan计算出来的,跨scan计算的曲率非法,排除,也即排除每个scan的前后五个点
      if (scanCount > 0 && scanCount < N_SCANS) {
        scanStartInd[scanCount] = i + 5;
        scanEndInd[scanCount - 1] = i - 5;
      }
    }
  }
  //第一个scan曲率点有效点序从第5个开始,最后一个激光线结束点序size-5
  scanStartInd[0] = 5;
  scanEndInd.back() = cloudSize - 5;

4.3 剔除不好的点

在这里插入图片描述

这部分对应于论文中提到的,计算完曲率后,最终的特征点需要满足以下要求:

  • 所选边缘点或平面点的个数不能超过子区域的最大值-------保证取点均匀,这一点下面会讲到
  • 它周围的点都没有被选中-------保证点不过于密集
  • 它不能位于与激光束大致平行的平面上,也不能位于遮挡区域的边界上-------剔除一些不好的点(下面的操作)

在这里插入图片描述
下面代码中的这个if用于剔除类似于图b中A点这样的易遮挡点

if (diff > 0.1)

当传感器在这个角度时,A点看起来是edge point,但稍微移动时,A点变为planar或者不可见,这种是不靠谱的,需要剔除。

代码中的意思是:如果A和B距离相差0.1米以上,就求解它们两个的深度,将深度大的点放缩到同一距离水平,然后用"深度距离(距离很小,近似为弧长)/深度",这个得到的就是两者夹角的弧度值,如果这个夹角很小,说明就是图b中的情况,A很容易被遮挡。

下面代码中的这个if用于剔除类似于图a中B点这样的所在平面与激光束近似平行的点

if (diff > 0.0002 * dis && diff2 > 0.0002 * dis)

diff和diff2分别是与后一个点、前一个点距离的平方,如果出现图a中B点这样的情况,diff和diff2值会很大,如果大于当前点深度的0.0002,则认为出现图a中的情况,需要剔除。

  //这个for循环:排除容易被斜面挡住的点、所在平面近似与激光束平行的点以及离群点(噪点)
  for (int i = 5; i < cloudSize - 6; i++) {//与后一个点差值,所以减6
    float diffX = laserCloud->points[i + 1].x - laserCloud->points[i].x;
    float diffY = laserCloud->points[i + 1].y - laserCloud->points[i].y;
    float diffZ = laserCloud->points[i + 1].z - laserCloud->points[i].z;
    //计算有效曲率点与后一个点之间的距离平方和
    float diff = diffX * diffX + diffY * diffY + diffZ * diffZ;

    //排除一些易遮挡的点,对应论文中图4(b)的A点
    if (diff > 0.1) {//前提:两个点之间距离要大于0.1

        //点的深度
      float depth1 = sqrt(laserCloud->points[i].x * laserCloud->points[i].x + 
                     laserCloud->points[i].y * laserCloud->points[i].y +
                     laserCloud->points[i].z * laserCloud->points[i].z);

      //后一个点的深度
      float depth2 = sqrt(laserCloud->points[i + 1].x * laserCloud->points[i + 1].x + 
                     laserCloud->points[i + 1].y * laserCloud->points[i + 1].y +
                     laserCloud->points[i + 1].z * laserCloud->points[i + 1].z);

      //按照两点的深度的比例,将深度较大的点拉回后计算距离
      if (depth1 > depth2) {
        diffX = laserCloud->points[i + 1].x - laserCloud->points[i].x * depth2 / depth1;
        diffY = laserCloud->points[i + 1].y - laserCloud->points[i].y * depth2 / depth1;
        diffZ = laserCloud->points[i + 1].z - laserCloud->points[i].z * depth2 / depth1;

        //边长比也即是弧度值,若小于0.1,说明夹角比较小,斜面比较陡峭,点深度变化比较剧烈,点处在近似与激光束平行的斜面上
        if (sqrt(diffX * diffX + diffY * diffY + diffZ * diffZ) / depth2 < 0.1) {//排除容易被斜面挡住的点
          //该点及前面五个点(大致都在斜面上)全部置为筛选过
          cloudNeighborPicked[i - 5] = 1;
          cloudNeighborPicked[i - 4] = 1;
          cloudNeighborPicked[i - 3] = 1;
          cloudNeighborPicked[i - 2] = 1;
          cloudNeighborPicked[i - 1] = 1;
          cloudNeighborPicked[i] = 1;
        }
      } else {
        diffX = laserCloud->points[i + 1].x * depth1 / depth2 - laserCloud->points[i].x;
        diffY = laserCloud->points[i + 1].y * depth1 / depth2 - laserCloud->points[i].y;
        diffZ = laserCloud->points[i + 1].z * depth1 / depth2 - laserCloud->points[i].z;

        if (sqrt(diffX * diffX + diffY * diffY + diffZ * diffZ) / depth1 < 0.1) {
          cloudNeighborPicked[i + 1] = 1;
          cloudNeighborPicked[i + 2] = 1;
          cloudNeighborPicked[i + 3] = 1;
          cloudNeighborPicked[i + 4] = 1;
          cloudNeighborPicked[i + 5] = 1;
          cloudNeighborPicked[i + 6] = 1;
        }
      }
    }

    float diffX2 = laserCloud->points[i].x - laserCloud->points[i - 1].x;
    float diffY2 = laserCloud->points[i].y - laserCloud->points[i - 1].y;
    float diffZ2 = laserCloud->points[i].z - laserCloud->points[i - 1].z;
    //与前一个点的距离平方和
    float diff2 = diffX2 * diffX2 + diffY2 * diffY2 + diffZ2 * diffZ2;

    //点深度的平方和
    float dis = laserCloud->points[i].x * laserCloud->points[i].x
              + laserCloud->points[i].y * laserCloud->points[i].y
              + laserCloud->points[i].z * laserCloud->points[i].z;

    //与前后点的平方和都大于深度平方和的万分之二,这些点视为离群点,包括陡斜面上的点,强烈凸凹点和空旷区域中的某些点,置为筛选过,弃用
    //对应于论文中的图4(a)中的B
    if (diff > 0.0002 * dis && diff2 > 0.0002 * dis) {
      cloudNeighborPicked[i] = 1;
    }
  }

4.4 特征提取

这部分与论文中说的有点不一样,论文中说将当前sweep分为4个相同区域,而代码中是分为了6个区域,每个区域的起始点和终止点索引分别为sp和ed,其计算本质如下:

六等份起点:sp = scanStartInd + (scanEndInd - scanStartInd)*j/6

六等份终点:ep = scanStartInd - 1 + (scanEndInd - scanStartInd)*(j+1)/6

1.按照曲率从小到大进行冒泡排序,A-LOAM中使用的是sort函数。

2.然后,如果曲率值大于0.1则选择为edge point(边缘特征点)或less edge point(没那么尖锐的边缘特征点),edge point对应论文中提到的每个区域选择2个,less edge point每个区域选择20个。

3.每选择一个点后就将曲率比较大的点的前后各5个连续距离比较近的点筛选出去,防止特征点聚集,使得特征点在每个方向上尽量分布均匀。

4.然后,如果曲率值小于0.1则选择为planar point(平面特征点)或less planar point(没那么平坦的平面特征点),planar point对应论文中提到的每个区域选择4个,而该区域剩下的全都归入less edge point。

5.同样的,每选择一个点后就将曲率比较大的点的前后各5个连续距离比较近的点筛选出去,防止特征点聚集,使得特征点在每个方向上尽量分布均匀。

6.最后,由于less planar point点最多,对每个区域less planar point的点进行体素栅格滤波

  pcl::PointCloud<PointType> cornerPointsSharp;
  pcl::PointCloud<PointType> cornerPointsLessSharp;
  pcl::PointCloud<PointType> surfPointsFlat;
  pcl::PointCloud<PointType> surfPointsLessFlat;

  //这个for循环:将每条线上的点分入相应的类别:边沿点和平面点
  for (int i = 0; i < N_SCANS; i++) {
    pcl::PointCloud<PointType>::Ptr surfPointsLessFlatScan(new pcl::PointCloud<PointType>);
    //将每个scan的曲率点分成6等份处理,确保周围都有点被选作特征点
    for (int j = 0; j < 6; j++) {
      //六等份起点:sp = scanStartInd + (scanEndInd - scanStartInd)*j/6
      int sp = (scanStartInd[i] * (6 - j)  + scanEndInd[i] * j) / 6;
      //六等份终点:ep = scanStartInd - 1 + (scanEndInd - scanStartInd)*(j+1)/6
      int ep = (scanStartInd[i] * (5 - j)  + scanEndInd[i] * (j + 1)) / 6 - 1;

      //按曲率从小到大冒泡排序
      for (int k = sp + 1; k <= ep; k++) {
        for (int l = k; l >= sp + 1; l--) {
            //如果后面曲率点大于前面,则交换
          if (cloudCurvature[cloudSortInd[l]] < cloudCurvature[cloudSortInd[l - 1]]) {
            int temp = cloudSortInd[l - 1];
            cloudSortInd[l - 1] = cloudSortInd[l];
            cloudSortInd[l] = temp;
          }
        }
      }

      //挑选每个分段的曲率很大和比较大的点
      int largestPickedNum = 0;
      for (int k = ep; k >= sp; k--) {
        int ind = cloudSortInd[k];  //曲率最大点的点序

        //如果曲率大的点,曲率的确比较大,并且未被筛选过滤掉
        if (cloudNeighborPicked[ind] == 0 &&
            cloudCurvature[ind] > 0.1) {
            
            largestPickedNum++;
        // 这里对应选点规则第二点
        if (largestPickedNum <= 2) {//挑选曲率最大的前2个点放入sharp点集合
            cloudLabel[ind] = 2;//2代表点曲率很大
            cornerPointsSharp.push_back(laserCloud->points[ind]);
            cornerPointsLessSharp.push_back(laserCloud->points[ind]);
        } else if (largestPickedNum <= 20) {//挑选曲率最大的前20个点放入less sharp点集合
            cloudLabel[ind] = 1;//1代表点曲率比较尖锐
            cornerPointsLessSharp.push_back(laserCloud->points[ind]);
        } else {
            break;
        }

          cloudNeighborPicked[ind] = 1;//筛选标志置位

          //这里对应选点规则第三点
          //将曲率比较大的点的前后各5个连续距离比较近的点筛选出去,防止特征点聚集,使得特征点在每个方向上尽量分布均匀
          for (int l = 1; l <= 5; l++) {
            float diffX = laserCloud->points[ind + l].x 
                        - laserCloud->points[ind + l - 1].x;
            float diffY = laserCloud->points[ind + l].y 
                        - laserCloud->points[ind + l - 1].y;
            float diffZ = laserCloud->points[ind + l].z 
                        - laserCloud->points[ind + l - 1].z;
            if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05) {
              break;
            }

            cloudNeighborPicked[ind + l] = 1;
          }
          for (int l = -1; l >= -5; l--) {
            float diffX = laserCloud->points[ind + l].x 
                        - laserCloud->points[ind + l + 1].x;
            float diffY = laserCloud->points[ind + l].y 
                        - laserCloud->points[ind + l + 1].y;
            float diffZ = laserCloud->points[ind + l].z 
                        - laserCloud->points[ind + l + 1].z;
            if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05) {
              break;
            }

            cloudNeighborPicked[ind + l] = 1;
          }
        }
      }

      //挑选每个分段的曲率很小比较小的点
      int smallestPickedNum = 0;
      for (int k = sp; k <= ep; k++) {
        int ind = cloudSortInd[k];

        //如果曲率的确比较小,并且未被筛选出
        if (cloudNeighborPicked[ind] == 0 &&
            cloudCurvature[ind] < 0.1) {

          cloudLabel[ind] = -1;//-1代表曲率很小的点
          surfPointsFlat.push_back(laserCloud->points[ind]);

          smallestPickedNum++;
          if (smallestPickedNum >= 4) {//只选最小的四个,剩下的Label==0,就都是曲率比较小的
            break;
          }

          cloudNeighborPicked[ind] = 1;
          for (int l = 1; l <= 5; l++) {//同样防止特征点聚集
            float diffX = laserCloud->points[ind + l].x 
                        - laserCloud->points[ind + l - 1].x;
            float diffY = laserCloud->points[ind + l].y 
                        - laserCloud->points[ind + l - 1].y;
            float diffZ = laserCloud->points[ind + l].z 
                        - laserCloud->points[ind + l - 1].z;
            if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05) {
              break;
            }

            cloudNeighborPicked[ind + l] = 1;
          }
          for (int l = -1; l >= -5; l--) {
            float diffX = laserCloud->points[ind + l].x 
                        - laserCloud->points[ind + l + 1].x;
            float diffY = laserCloud->points[ind + l].y 
                        - laserCloud->points[ind + l + 1].y;
            float diffZ = laserCloud->points[ind + l].z 
                        - laserCloud->points[ind + l + 1].z;
            if (diffX * diffX + diffY * diffY + diffZ * diffZ > 0.05) {
              break;
            }

            cloudNeighborPicked[ind + l] = 1;
          }
        }
      }

      //将剩余的点(包括之前被排除的点)全部归入平面点中less flat类别中
      for (int k = sp; k <= ep; k++) {
        if (cloudLabel[k] <= 0) {
          surfPointsLessFlatScan->push_back(laserCloud->points[k]);
        }
      }
    }

    //由于less flat点最多,对每个分段less flat的点进行体素栅格滤波
    pcl::PointCloud<PointType> surfPointsLessFlatScanDS;
    pcl::VoxelGrid<PointType> downSizeFilter;
    downSizeFilter.setInputCloud(surfPointsLessFlatScan);
    downSizeFilter.setLeafSize(0.2, 0.2, 0.2);
    downSizeFilter.filter(surfPointsLessFlatScanDS);

    //less flat点汇总
    surfPointsLessFlat += surfPointsLessFlatScanDS;
  }

4.5 发布话题

最后这部分就是ROS中的发布话题,没什么可讲的,总结一下发布的话题都是什么:

  • /velodyne)cloud_2:经过处理后的所有点云(按照scanID排序的有序点云)
  • /laser_cloud_sharp:edge point特征点,一共1662=192个
  • /laser_cloud_less_sharp:less edge point特征点,一共16620=1920个
  • /laser_cloud_flat:planar point特征点,一共1664=384个
  • /laser_cloud_less_flat:less planar point特征点,其余的满足要求的个
  • /imu_trans:包含了:当前sweep的IMU测量的起始RPY角、终止RPY角、最后一个点相对于第一个点的畸变位移和速度
  //publich消除非匀速运动畸变后的所有的点
  sensor_msgs::PointCloud2 laserCloudOutMsg;
  pcl::toROSMsg(*laserCloud, laserCloudOutMsg);
  laserCloudOutMsg.header.stamp = laserCloudMsg->header.stamp;
  laserCloudOutMsg.header.frame_id = "/camera";
  pubLaserCloud.publish(laserCloudOutMsg);

  //publish消除非匀速运动畸变后的平面点和边沿点
  sensor_msgs::PointCloud2 cornerPointsSharpMsg;
  pcl::toROSMsg(cornerPointsSharp, cornerPointsSharpMsg);
  cornerPointsSharpMsg.header.stamp = laserCloudMsg->header.stamp;
  cornerPointsSharpMsg.header.frame_id = "/camera";
  pubCornerPointsSharp.publish(cornerPointsSharpMsg);

  sensor_msgs::PointCloud2 cornerPointsLessSharpMsg;
  pcl::toROSMsg(cornerPointsLessSharp, cornerPointsLessSharpMsg);
  cornerPointsLessSharpMsg.header.stamp = laserCloudMsg->header.stamp;
  cornerPointsLessSharpMsg.header.frame_id = "/camera";
  pubCornerPointsLessSharp.publish(cornerPointsLessSharpMsg);

  sensor_msgs::PointCloud2 surfPointsFlat2;
  pcl::toROSMsg(surfPointsFlat, surfPointsFlat2);
  surfPointsFlat2.header.stamp = laserCloudMsg->header.stamp;
  surfPointsFlat2.header.frame_id = "/camera";
  pubSurfPointsFlat.publish(surfPointsFlat2);

  sensor_msgs::PointCloud2 surfPointsLessFlat2;
  pcl::toROSMsg(surfPointsLessFlat, surfPointsLessFlat2);
  surfPointsLessFlat2.header.stamp = laserCloudMsg->header.stamp;
  surfPointsLessFlat2.header.frame_id = "/camera";
  pubSurfPointsLessFlat.publish(surfPointsLessFlat2);

  //publich IMU消息,由于循环到了最后,因此是Cur都是代表最后一个点,即最后一个点的欧拉角,畸变位移及一个点云周期增加的速度
  pcl::PointCloud<pcl::PointXYZ> imuTrans(4, 1);    // 1行4列的有序点云
  //起始点欧拉角
  imuTrans.points[0].x = imuPitchStart;
  imuTrans.points[0].y = imuYawStart;
  imuTrans.points[0].z = imuRollStart;

  //最后一个点的欧拉角
  imuTrans.points[1].x = imuPitchCur;
  imuTrans.points[1].y = imuYawCur;
  imuTrans.points[1].z = imuRollCur;

  //最后一个点相对于第一个点的畸变位移和速度
  imuTrans.points[2].x = imuShiftFromStartXCur;
  imuTrans.points[2].y = imuShiftFromStartYCur;
  imuTrans.points[2].z = imuShiftFromStartZCur;

  imuTrans.points[3].x = imuVeloFromStartXCur;
  imuTrans.points[3].y = imuVeloFromStartYCur;
  imuTrans.points[3].z = imuVeloFromStartZCur;

  sensor_msgs::PointCloud2 imuTransMsg;
  pcl::toROSMsg(imuTrans, imuTransMsg);
  imuTransMsg.header.stamp = laserCloudMsg->header.stamp;
  imuTransMsg.header.frame_id = "/camera";
  pubImuTrans.publish(imuTransMsg);
}

总结

本篇文章介绍了LOAM代码的第一个节点文件scanRegistration,我感觉这个代码还是很好懂得,坐标变换部分也不是很复杂,对照论文慢慢看就能看懂。

下一篇将介绍laserOdometry.cpp,也就是雷达里程计部分

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/901616.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chatGPT-对话爱因斯坦

引言 阿尔伯特爱因斯坦&#xff08; 1879年 3 月 14 日 – 1955 年 4 月 18 日&#xff09;是一位出生于德国的理论物理学家&#xff0c;被广泛认为成为有史以来最伟大、最有影响力的科学家之一。他以发展相对论而闻名&#xff0c;他还对量子力学做出了重要贡献&#xff0c;因…

安装搭建私有仓库Harbor

目录 一、安装docker编排工具docker compose 二、安装Harbor软件包 三、修改配置文件 四、运行安装脚本 五、安装后验证 六、使用Harbor 一、安装docker编排工具docker compose 在github上选择自己想要的版本下载 https://github.com/docker/compose/releases 下载好…

Android AppCompatActivity标题栏操作

使用 AndroidStudio 新建的工程默认用 AppCompatActivity &#xff0c;是带标题栏的。 记录下 修改标题栏名称 和 隐藏标题栏 的方法。 修改标题栏名称 Override protected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R…

语言基础2 矩阵和数组

语言基础2 矩阵和数组 矩阵和数组是matlab中信息和数据的基本表示形式 可以创建常用的数组和网格 合并现有的数组 操作数组的形状和内容 以及使用索引访问数组元素 用到的函数列表如下 一 创建 串联和扩展矩阵 矩阵时按行和列排列的数据元素的二维数据元素的二维矩…

华为OceanStore V3存储模拟器搭建教程

1 软件下载 软件地址&#xff1a;https://pan.baidu.com/s/12-5mZmq3cNiyC7J6KC0XxA?pwd1234 提取码&#xff1a;1234 2 软件安装 2.1 VMware软件安装 VMware软件安装请参考百度教程&#xff0c;注意事项如下&#xff1a; &#xff08;1&#xff09;软件安装前电脑需要开启虚拟…

2021年06月 C/C++(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

第1题:数对 给定2到15个不同的正整数,你的任务是计算这些数里面有多少个数对满足:数对中一个数是另一个数的两倍。 比如给定1 4 3 2 9 7 18 22,得到的答案是3,因为2是1的两倍,4是2个两倍,18是9的两倍。 时间限制:1000 内存限制:65536 输入 一行,给出2到15个两两不同且…

第十章MyBatis的参数

单个简单参数处理 MyBatis中的sql语句中的属性 id&#xff1a;为mapper接口的方法名resultType&#xff1a;为返回参数的类型parameterType&#xff1a;为传递过来的参数类型&#xff0c;MyBatis会自动推断一般不用填写 javaType表示说明这个字段的java类型 jdbcType表示说明…

C++ 的关键字(保留字)完整介绍

1. asm asm (指令字符串)&#xff1a;允许在 C 程序中嵌入汇编代码。 2. auto auto&#xff08;自动&#xff0c;automatic&#xff09;是存储类型标识符&#xff0c;表明变量"自动"具有本地范围&#xff0c;块范围的变量声明&#xff08;如for循环体内的变量声明…

[python爬虫] 爬取图片无法打开或已损坏的简单探讨

本文主要针对python使用urlretrieve或urlopen下载百度、搜狗、googto&#xff08;谷歌镜像&#xff09;等图片时&#xff0c;出现"无法打开图片或已损坏"的问题&#xff0c;作者对它进行简单的探讨。同时&#xff0c;作者将进一步帮你巩固selenium自动化操作和urllib…

csapp archlab PartC满分解答

任务 修改ncopy.ys和pipe-full.hcl以尽可能的提高ncopy.ys的运行速度 思路 pipe-full.hcl&#xff1a; 实现iaddq指令&#xff08;家庭作业4.54&#xff09;实现加载转发&#xff08;家庭作业4.57&#xff09; ncopy.ys&#xff1a; 使用循环展开&#xff08;第5.8节&…

Python将本地文件上传到百度网盘

Python将本地文件上传到百度网盘 前言相关介绍Python将本地文件上传到百度网盘下载相关依赖库获取授权打开链接复制授权码粘贴授权码到终端&#xff0c;并回车连接到百度网盘 上传文件文件同步上传文件夹下载文件夹 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;…

Golang文件操作详解

打开和关闭文件 从 Go 1.16 开始,现在提供了相同的功能 通过包 IO 或包操作系统,以及这些实现 应该在新代码中首选。 有关详细信息,请参阅特定函数文档。 弃用了"io/ioutil"对文件的操作 读取文件方法一(os.open+file.read只读形式): os.Open() 函数能够打开…

攻防世界-Web_python_template_injection

原题解题思路 一说到python的web我就想到flask框架&#xff0c;但从没用过flask注入。 从零学习flask模板注入&#xff0c;这篇文章有详细的介绍。 经过尝试很快就能发现使用{{}}就能注入&#xff0c;并且会回显报错信息&#xff0c;3的位置是{{}}中语句的执行结果。 找可用的引…

T113-S3-LAN8720A网口phy芯片调试

目录 前言 一、LAN8720A介绍 二、原理图连接 三、设备树配置 四、内核配置 五、调试问题 总结 前言 在嵌入式系统开发中&#xff0c;网络连接是至关重要的一部分。T113-S3开发板搭载了LAN8720A系列的网口PHY芯片&#xff0c;用于实现以太网连接。在开发过程中&#xff0c…

STC15单片机PM2.5空气质量检测仪

一、系统方案 本设计采用STC15单片机作为主控制器&#xff0c;PM2.5传感器、按键设置&#xff0c;液晶1602显示&#xff0c;蜂鸣器报警。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化&#xff1a; void lcd_init()//液晶初始化设置 { de…

C#程序变量统一管理例子 - 开源研究系列文章

今天讲讲关于C#应用程序中使用到的变量的统一管理的代码例子。 我们知道&#xff0c;在C#里使用变量&#xff0c;除了private私有变量外&#xff0c;程序中使用到的公共变量就需要进行统一的存放和管理。这里笔者使用到的公共变量管理库划分为&#xff1a;1)窗体&#xff1b;2)…

熔断降级的理解和基于feign的熔断降级

什么是熔断降级&#xff1a; 在微服务保护中我们使用sentinel进行了熔断降级&#xff0c;熔断降级时为了防止雪崩效应&#xff0c;什么是雪崩效应&#xff0c;因为微服务是一层调用一层的&#xff0c;如果下面某一个微服务宕机了&#xff0c;就会导致全部的微服务宕机&#xf…

【欧拉计划】3或5的倍数

题目链接&#xff1a;3或5的倍数 解法一&#xff1a;暴力枚举 C语言代码 #include<stdio.h> int main (){int sum 0;for(int i 0;i<1000;i){if(i%30 || i%50)sum i;}printf("%d\n",sum);return 0; } //运行结果&#xff1a;233168上面这个解法的时间复杂…

回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览…

【BUG】Docker启动MySQL报错

个人主页&#xff1a;金鳞踏雨 个人简介&#xff1a;大家好&#xff0c;我是金鳞&#xff0c;一个初出茅庐的Java小白 目前状况&#xff1a;22届普通本科毕业生&#xff0c;几经波折了&#xff0c;现在任职于一家国内大型知名日化公司&#xff0c;从事Java开发工作 我的博客&am…