【Linux操作系统】详解Linux系统编程中的管道进程通信

news2025/1/12 8:50:00

在Linux系统编程中,管道是一种常用的进程间通信方式。它可以实现父子进程之间或者兄弟进程之间的数据传输。本文将介绍如何使用管道在Linux系统中进行进程通信,并给出相应的代码示例。

在这里插入图片描述

文章目录

    • 1. 管道的概念
    • 2. 管道的创建和使用
      • 2.1 原型
      • 2.2 示例
    • 3. 父子进程通信
    • 4. 兄弟进程间通信
    • 5. fifo函数
    • 6. fifo实现血缘关系进程间通信
    • 7. 管道的特性和限制
    • 8. 总结

1. 管道的概念

管道是一种特殊的文件,它提供了一个缓冲区用于进程间的数据传输。管道可以分为两种类型:匿名管道和命名管道。

  • 匿名管道:匿名管道是一种临时的管道,只能在有亲缘关系的进程之间使用,通常用于父子进程之间的通信。匿名管道只能在创建它的进程及其子进程之间使用,其他进程无法访问。
  • 命名管道:命名管道是一种有名字的管道,可以在不同的进程之间进行通信。命名管道通过在文件系统中创建一个文件来实现,进程可以通过该文件来读写数据。

在本文中,我们将重点介绍匿名管道的使用。

2. 管道的创建和使用

2.1 原型

在Linux系统中,可以使用pipe函数来创建一个管道。pipe函数的原型如下:

int pipe(int pipefd[2]);

pipefd是一个整型数组,用于存储管道的读写文件描述符。pipefd[0]用于读取管道中的数据,pipefd[1]用于写入管道中的数据。

2.2 示例

下面是一个简单的示例代码,演示了如何使用管道进行父子进程之间的通信:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

int main() {
    int pipefd[2];
    pid_t pid;
    char buf[1024];

    // 创建管道
    if (pipe(pipefd) == -1) {
        perror("pipe");
        exit(EXIT_FAILURE);
    }

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid == 0) {
        // 子进程写入数据到管道
        close(pipefd[0]); // 关闭读取端
        char* msg = "Hello, parent!";
        write(pipefd[1], msg, strlen(msg) + 1);
        close(pipefd[1]); // 关闭写入端
        exit(EXIT_SUCCESS);
    } else {
        // 父进程读取管道中的数据
        close(pipefd[1]); // 关闭写入端
        read(pipefd[0], buf, sizeof(buf));
        printf("Received message from child: %s\n", buf);
        close(pipefd[0]); // 关闭读取端
        exit(EXIT_SUCCESS);
    }
}

在上述代码中,首先使用pipe函数创建了一个管道。然后使用fork函数创建了一个子进程。子进程使用write函数将数据写入管道,父进程使用read函数从管道中读取数据。

3. 父子进程通信

父进程创建管道,并创建子进程后,父进程通过管道向子进程发送数据,子进程通过管道接收父进程发送的数据。

下面是一个示例代码,演示了父子进程之间使用管道进行通信的过程:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>

int main() {
    int pipefd[2];
    pid_t pid;
    char buf[1024];

    // 创建管道
    if (pipe(pipefd) == -1) {
        perror("pipe");
        exit(EXIT_FAILURE);
    }

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid == 0) {
        // 子进程读取管道中的数据
        close(pipefd[1]); // 关闭写入端
        read(pipefd[0], buf, sizeof(buf));
        printf("Received message from parent: %s\n", buf);
        close(pipefd[0]); // 关闭读取端
        exit(EXIT_SUCCESS);
    } else {
        // 父进程写入数据到管道
        close(pipefd[0]); // 关闭读取端
        char* msg = "Hello, child!";
        write(pipefd[1], msg, strlen(msg) + 1);
        close(pipefd[1]); // 关闭写入端
        exit(EXIT_SUCCESS);
    }
}

在上述代码中,首先使用pipe函数创建了一个管道。然后使用fork函数创建了一个子进程。子进程使用read函数从管道中读取数据,父进程使用write函数将数据写入管道。

4. 兄弟进程间通信

要实现兄弟进程之间的通信,可以使用命名管道(named pipe)或者共享内存(shared memory)来实现。

  1. 使用命名管道(named pipe):

    • 兄弟进程可以通过创建一个命名管道来进行通信。
    • 一个兄弟进程将数据写入命名管道,另一个兄弟进程从命名管道中读取数据。
    • 兄弟进程需要使用相同的命名管道名称来进行通信。
    • 可以使用mkfifo函数创建命名管道,使用open函数打开管道进行读写操作。
  2. 使用共享内存(shared memory):

    • 兄弟进程可以通过创建一个共享内存区域来进行通信。
    • 一个兄弟进程将数据写入共享内存,另一个兄弟进程从共享内存中读取数据。
    • 兄弟进程需要使用相同的共享内存标识符来进行通信。
    • 可以使用shmget函数创建共享内存,使用shmat函数将共享内存附加到进程的地址空间中进行读写操作。

下面是一个使用命名管道的示例代码,演示了兄弟进程之间的通信过程:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>

int main() {
    pid_t pid;
    char buf[1024];
    const char* fifoName = "/tmp/myfifo";

    // 创建命名管道
    mkfifo(fifoName, 0666);

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid == 0) {
        // 子进程从命名管道中读取数据
        int fd = open(fifoName, O_RDONLY);
        read(fd, buf, sizeof(buf));
        printf("Received message from sibling: %s\n", buf);
        close(fd);
        exit(EXIT_SUCCESS);
    } else {
        // 父进程向命名管道中写入数据
        int fd = open(fifoName, O_WRONLY);
        char* msg = "Hello, sibling!";
        write(fd, msg, strlen(msg) + 1);
        close(fd);
        exit(EXIT_SUCCESS);
    }
}

在上述代码中,首先使用mkfifo函数创建了一个命名管道。然后使用fork函数创建了一个子进程。子进程使用open函数打开命名管道并从中读取数据,父进程使用open函数打开命名管道并向其中写入数据。

5. fifo函数

下面是一个使用mkfifoopen函数的示例代码,演示了兄弟进程之间的通信过程:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>

int main() {
    pid_t pid;
    char buf[1024];
    const char* fifoName = "/tmp/myfifo";

    // 创建命名管道
    mkfifo(fifoName, 0666);

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid == 0) {
        // 子进程从命名管道中读取数据
        int fd = open(fifoName, O_RDONLY);
        read(fd, buf, sizeof(buf));
        printf("Received message from sibling: %s\n", buf);
        close(fd);
        exit(EXIT_SUCCESS);
    } else {
        // 父进程向命名管道中写入数据
        int fd = open(fifoName, O_WRONLY);
        char* msg = "Hello, sibling!";
        write(fd, msg, strlen(msg) + 1);
        close(fd);
        exit(EXIT_SUCCESS);
    }
}

在上述代码中,首先使用mkfifo函数创建了一个命名管道。然后使用fork函数创建了一个子进程。子进程使用open函数打开命名管道并从中读取数据,父进程使用open函数打开命名管道并向其中写入数据。

6. fifo实现血缘关系进程间通信

下面是一个使用命名管道实现非血缘关系进程间通信的示例代码:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>

int main() {
    pid_t pid;
    char buf[1024];
    const char* fifoName = "/tmp/myfifo";

    // 创建命名管道
    mkfifo(fifoName, 0666);

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid == 0) {
        // 子进程向命名管道中写入数据
        int fd = open(fifoName, O_WRONLY);
        char* msg = "Hello, sibling!";
        write(fd, msg, strlen(msg) + 1);
        close(fd);
        exit(EXIT_SUCCESS);
    } else {
        // 父进程从命名管道中读取数据
        int fd = open(fifoName, O_RDONLY);
        read(fd, buf, sizeof(buf));
        printf("Received message from sibling: %s\n", buf);
        close(fd);
        exit(EXIT_SUCCESS);
    }
}

在上述代码中,首先使用mkfifo函数创建了一个命名管道。然后使用fork函数创建了一个子进程。子进程使用open函数打开命名管道并向其中写入数据,父进程使用open函数打开命名管道并从中读取数据。

7. 管道的特性和限制

管道作为一种进程间通信方式,具有以下特性和限制:

  • 管道是半双工的,即数据只能在一个方向上流动。
  • 管道是有限长度的,一旦写满了数据,继续写入会被阻塞,直到有进程读取数据后才能继续写入。
  • 管道只能在有亲缘关系的进程之间使用,即父子进程或者兄弟进程之间。

8. 总结

  1. fifo函数:在C标准库中没有名为fifo的函数。

  2. 命名管道(FIFO):命名管道是一种特殊的文件,可以在文件系统中创建,并且可以被不同的进程打开和读写。使用mkfifo函数可以创建命名管道。

  3. 兄弟进程间通信:兄弟进程是指由同一个父进程创建的多个子进程。兄弟进程间通信可以使用命名管道实现,其中一个进程向命名管道写入数据,另一个进程从命名管道读取数据。

  4. 非血缘关系进程间通信:非血缘关系的进程是指没有共同的父进程的进程。非血缘关系进程间通信同样可以使用命名管道实现,其中一个进程向命名管道写入数据,另一个进程从命名管道读取数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/897575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Azure Blob存储使用

创建存储账户,性能选择标准即可&#xff0c;冗余选择本地冗余存储即可 容器选择类别选择专用即可 可以上传文件到blob中 打开文件可以看到文件的访问路径 4.编辑中可以修改文件 复制链接&#xff0c;尝试访问&#xff0c;可以看到没有办法访问&#xff0c;因为创建容器的时候选…

Dubbo Spring Boot Starter 开发微服务应用

环境要求 系统&#xff1a;Windows、Linux、MacOS JDK 8 及以上&#xff08;推荐使用 JDK17&#xff09; Git IntelliJ IDEA&#xff08;可选&#xff09; Docker &#xff08;可选&#xff09; 项目介绍 在本任务中&#xff0c;将分为 3 个子模块进行独立开发&#xff…

技术分享| WebRTC之SDP详解

一&#xff0c;什么是SDP WebRTC 是 Web Real-Time Communication&#xff0c;即网页实时通信的缩写&#xff0c;是 RTC 协议的一种Web实现&#xff0c;项目由 Google 开源&#xff0c;并和 IETF 和 W3C 制定了行业标准。 WebRTC是点对点通讯&#xff0c;他的通话建立需要交换…

读书笔记-《ON JAVA 中文版》-摘要22[第二十章 泛型-1]

文章目录 第二十章 泛型1. 简单泛型1.1 简单泛型1.2 一个元组类库 2. 泛型接口3. 泛型方法3.1 泛型方法3.2 变长参数和泛型方法 4. 构建复杂模型 第二十章 泛型 普通的类和方法只能使用特定的类型&#xff1a;基本数据类型或类类型。如果编写的代码需要应用于多种类型&#xff…

神卓互联内网穿透

神卓互联内网穿透是一种技术&#xff0c;用于实现在不同网络环境下的设备互相访问。通常情况下&#xff0c;内网设备无法直接从外部访问&#xff0c;但通过内网穿透技术可以实现外部设备与内网设备之间的通信。 使用神卓互联内网穿透&#xff0c;您可以将内网设备暴露在公网上…

苹果也顶不住了,警告睡觉时不要将iPhone放在旁边,有自燃的风险

苹果或许是由于近几年来&#xff0c;iPhone自燃导致损失的案例增加&#xff0c;外媒报道指苹果警告用户不要将充电的iPhone放在身边&#xff0c;特别是睡觉的时候更不要将充电中的iPhone放在身边&#xff0c;这可能导致危险。 这几年iPhone自燃的事件屡屡有报道&#xff0c;甚至…

(黑客)自学

一、前言&#xff1a; 1.这是一条坚持的道路,三分钟的热情可以放弃往下看了. 2.多练多想,不要离开了教程什么都不会了.最好看完教程自己独立完成技术方面的开发. 3.有时多 google,baidu,我们往往都遇不到好心的大神,谁会无聊天天给你做解答. 4.遇到实在搞不懂的,可以先放放,以…

「UG/NX」Block UI 超级截面SuperSection

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#

【Freertos基础入门】队列(queue)的使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、队列是什么&#xff1f;二、队列的操作二、示例代码总结 前言 本系列基于stm32系列单片机来使用freerots FreeRTOS是一个广泛使用的开源实时操作系统&…

如何在Java实现TCP方式发送和接收Socket消息(多线程模式)

目录 导言&#xff1a;正文&#xff1a;1. 创建Server端&#xff1a;2. 创建Client端&#xff1a;3. 多线程模式&#xff1a; 代码示例Server端代码示例&#xff1a;Client端代码示例&#xff1a;同步模式发送TCP消息异步模式 结论&#xff1a; 导言&#xff1a; 在Java编程中…

POJ 3641 Pseudoprime numbers 米勒拉宾素数判定+埃氏筛法

一、思路 对于输入的一个数字n和a&#xff0c;我们用快速幂判断 n ^ a % n 是否等于n&#xff0c;如果不等于直接输出no&#xff0c;等于的话&#xff0c;再判断n是否为素数&#xff0c;如果n为素数&#xff0c;输出no&#xff0c;否则输出yes。 判断素数的话&#xff0c;对于…

德赛西威半年报:竞争加剧,座舱乏力?智驾继续保持高增速

作为国内头部的智能网联核心软硬件供应商&#xff0c;德赛西威的表现&#xff0c;也在一定程度上反映了市场的行情走向&#xff0c;也凸显不同细分赛道的竞争白热化。 半年报数据显示&#xff0c;2023年1-6月&#xff0c;德赛西威实现营业收入87.24亿元&#xff0c;同比增长36.…

【LeetCode75】第三十三题 二叉树的最大深度

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 从这一题开始&#xff0c;LeetCode75进入到了二叉树章节。 这边建议不熟悉二叉树的小伙伴可以先去做做力扣的前序遍历&#xff0c;中序遍…

Azure存储访问层

blob数据的热访问层&#xff0c;冷访问层和存档访问层 Azure Blob 存储是一种托管对象存储服务&#xff0c;可用于存储和访问大量非结构化数据&#xff0c;如文本和二进制数据。Azure Blob 存储提供了三个不同层级的访问方式&#xff0c;以适应不同数据的使用模式和成本效益需…

基于GUI的卷积神经网络和长短期神经网络的语音识别系统,卷积神经网的原理,长短期神经网络的原理

目录 背影 卷积神经网络CNN的原理 卷积神经网络CNN的定义 卷积神经网络CNN的神经元 卷积神经网络CNN的激活函数 卷积神经网络CNN的传递函数 长短期神经网络的原理 基于GUI的卷积神经网络和长短期神经网络的语音识别系统 代码下载链接:基于MATLABGUI编程的卷积神经网络和长短期…

XQuery创建BaseX数据库实例

XQuery创建BaseX数据库实例 文章目录 XQuery创建BaseX数据库实例1、准备工作2、demo目录结构3、IDEA配置BaseX4、工具类BaseXClient5、Example 1、准备工作 开发工具&#xff1a; IDEAOxygen 技术&#xff1a; JavaBaseXXpathXquery BaseX需要阅读的文档&#xff1a; htt…

【学习日记】【FreeRTOS】延时列表的实现

前言 本文在前面文章的基础上实现了延时列表&#xff0c;取消了 TCB 中的延时参数。 本文是对野火 RTOS 教程的笔记&#xff0c;融入了笔者的理解&#xff0c;代码大部分来自野火。 一、如何更高效地查找延时到期的任务 1. 朴素方式 在本文之前&#xff0c;我们使用了一种朴…

二进制数的左移和右移位运算numpy.left_shift()numpy.right_shift()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 二进制数的左移和右移位运算 numpy.left_shift() numpy.right_shift() [太阳]选择题 下列代码最后一次输出的结果是&#xff1f; import numpy as np a 8 print("【显示】a ", a)…

AgentBench::AI智能体发展的潜在问题(二)

从历史上看&#xff0c;几乎每一种新技术的广泛应用都会在带来新机遇的同时引发很多新问题&#xff0c;AI智能体也不例外。从目前的发展看&#xff0c;AI智能体的发展可能带来的新问题可能包括如下方面&#xff1a; 第二是AI智能体的普及将有可能进一步加剧AI造成的技术性失业。…

无脑入门pytorch系列(四)—— scatter_

本系列教程适用于没有任何pytorch的同学&#xff08;简单的python语法还是要的&#xff09;&#xff0c;从代码的表层出发挖掘代码的深层含义&#xff0c;理解具体的意思和内涵。pytorch的很多函数看着非常简单&#xff0c;但是其中包含了很多内容&#xff0c;不了解其中的意思…