耕地单目标语义分割实践——Pytorch网络过程实现理解

news2025/1/15 6:53:29

一、卷积操作

(一)普通卷积(Convolution)

(二)空洞卷积(Atrous Convolution)

        根据空洞卷积的定义,显然可以意识到空洞卷积可以提取到同一输入的不同尺度下的特征图,具有构建特征金字塔的基础。

(三)深度可分离卷积(Depthwise-Separable Convolution)

        在对深度可分离卷积具有一定的了解后,我产生了一种“既然模型参数大幅度减少了,那么该模型的运行时间应该也会大幅度缩减”的想法。可是,当我分别在GPU、CPU上进行实验时,我发现结果并不与我当初所想相同。后经过查阅资料[13][14]进一步加深了我对硬件计算优势以及深度可分离卷积的理解。(注:1)实际上,通常我们一层卷积之后都会加深特征图深度,但是我所设计的实验保持了原有深度前向计算。同时,一个卷积网络也应顾及到模型精确性适当使用DSC而非完全;2)参考资料[13]具有与我相同思想的不同模型之间的对比试验)

        适合GPU运算的运算类型有1)大量轻量级运算;2)高度并行运算:3)计算密集型:4)浮点型运算等。CPU擅长于串行运行。

(图源: 三分钟搞懂CPU, GPU, FPGA计算能力 - 知乎)

        针对DSC有可能出现模型参数大幅度减少,但模型运行时间却不下降的现象,可能存在以下原因:

        1)许多深度学习加速器和库(如CUDA和cuDNN),对深度可分离卷积的优化可能不够;

        2)尽管深度可分离卷积需要的乘、加运算较少,但与普通卷积相比,它可能需要更多的内存访问操作,这在GPU上可能导致效率降低;

        3)受限于自身设备的显存容量。

(四)转置卷积(Transpose Convolution)

          转置卷积是一种卷积,它将输入和核进行了重新排列,同卷积一般是做下采样不同,它通常用作上采样。如果卷积将输入从(h,w)变成了(h‘,w'),同样超参数下转置卷积将(h‘,w')变成(h,w)。

       转置卷积可以变为对应核的矩阵乘法。转置卷积是一种变化了输入和核的卷积,来得到上采样的目的,其并不等同于数学上的反卷积概念。在深度学习中,反卷积神经网络指用了转置卷积的神经网络。

二、池化操作

        池化操作主要的作用为1)减少网络计算量与内存消耗;2)增加感受野大小;3)增加平移不变性(即较小的特征偏移也不影响特征输出)。从某种角度上来说,Pooling操作是一种对现存硬件计算能力和存储设备的妥协,其在某些卷积神经网络(如Resnet)可以被忽略。

三、数据归一化操作

        数据归一化操作中(以BatchNormal为例),β和γ参数是需要计算梯度更新的学习参数,数据归一化行为在Train、Test过程中是不一样的。在Train过程中,我们需要不断计算反向梯度更新β、γ参数,而在Test过程中我们是会固定前面学习得到的β、γ参数(Pytorch中测试调用net.eval())。

        批量归一化的主要作用:

        1)控制传入下一层的特征图数据,有效减少梯度爆炸和梯度消失的可能;

        2)减少对参数初始化的依赖;

        3)便于应用更高的学习率,实现更快的收敛。

四、深度学习中的Batch、Epoch

        反向梯度计算以更新模型权值等参数发生于一个Batch迭代后。初期训练时,我认为足够的Batch样本数对于模型的快速收敛较为重要。那么,如果受限于自身GPU显存限制,我们可以进一步权衡在CPU上训练更多样本数的Batch,而放宽训练时间这一要求。

        在合理范围内,增大Batch_Size具有以下优点[11]:

        1)内存利用率提高了,大矩阵乘法的并行化效率提高;

        2)跑完一次epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快;

        3)在一定范围内,一般来说Batch Size越大,其确定的下降方向越可能对准极值低点,训练引起损失震荡越小。

(图源: 【深度学习训练之Batch】_深度学习batch_哈哈哈哈海的博客-CSDN博客)

五、在.ipynb文件中调用不同路径位置文件的方法

(1)首先被引.ipynb文件转换为.py文件,然后在.ipynb文件中头部添加sys.path.insert(0,r"绝对路径")或sys.path.append(r“绝对路径”)[17]。

(2)编写.ipynb解析文件置于同一文件夹下[16]。

Pytorch参考资料:

[1] 在CV/NLP/DL领域中,有哪些修改一行代码或者几行代码提升性能的算法? - 圈圈的回答 - 知乎

https://www.zhihu.com/question/427088601/answer/1544199551.

[2]在CV/NLP/DL领域中,有哪些修改一行代码或者几行代码提升性能的算法? - 陀飞轮的回答 - 知乎 https://www.zhihu.com/question/427088601/answer/1587333057

[3]PyTorch 中文文档

[4]课时61 什么是卷积-1_哔哩哔哩_bilibili

[5]PyTorch Forums

[6]https://en.wikipedia.org/wiki/Convolutional_neural_network

[7]数字图像处理:第四版/(美)拉斐尔C.冈萨雷斯(Rafael C.Gonzalez),(美)理查德E.伍兹(Richard E.Woods)著;阮秋琦等译.——北京:电子工业出版社,2020.5.

[8]深入理解空洞卷积 - 知乎

[9]演示分组,深度,深度可分离卷积|3D卷积神经网络_哔哩哔哩_bilibili

[10]卷积神经网络之深度可分离卷积(Depthwise Separable Convolution) - 知乎

[11]谈谈深度学习中的 Batch_Size_机器学习batch size作用_ycheng_sjtu的博客-CSDN博客

[12]pytorch统计模型参数量并输出_pytorch输出模型参数量_xidaoliang123的博客-CSDN博客

[13]薰风读论文:MobileNet 详解深度可分离卷积,它真的又好又快吗? - 知乎

[14]三分钟搞懂CPU, GPU, FPGA计算能力 - 知乎

Python参考资料:

[15]Python:为什么类中的私有属性可以在外部赋值并访问_python 类外访问私有属性_Ding Jiaxiong的博客-CSDN博客

[16]调用jupyter notebook文件内的函数一种简单方法_AlexInML的博客-CSDN博客

[17]Jupyter Notebook引入外部的py文件中的方法_dirtyboy6666的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/897015.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

代码随想录 (二)链表

链表 二 移除链表元素 1 没有头结点 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next)…

分割一切模型FastSAM,点哪里分割哪里

分割一切模型FastSAM点哪里分割哪里 VX搜索 《晓理紫》,关注并回复fastsampoint获取核心源码 [晓理紫] 1 效果 2 核心代码 在FastSAM ONNXRuntime部署,FastSAM TensorRT部署分别介绍了FastSAM通过OnnxRuntime以及TensorRT部署,通过点进行选取…

每天一道leetcode:剑指 Offer 64. 求1+2+…+n(中等递归)

今日份题目&#xff1a; 求 12...n &#xff0c;要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句&#xff08;A?B:C&#xff09;。 示例1 输入: n 3 输出: 6 示例2 输入: n 9 输出: 45 提示 1 < n < 10000 题目思路 使用递归…

特训营第二天项目实战案例

防火墙理论知识&#xff08;一定要记得&#xff09; 防火墙的分类 包过滤防火墙 就是在路由器上写ACL 代理防火墙 相当于租房中介 缺点&#xff1a;速度慢 状态检测防火墙 一个数据包到达防火墙以后&#xff0c;如果策略允许通过&#xff0c;则放行。并建立状态化表项。 优…

python让你从【 i茅台 】里解放双手

先看效果 ![青龙面板跑的结果](https://img-blog.csdnimg.cn/15070a54904a4ab9808c66ba7521d6eb.jpeg 接下来直接上源码 ----------------------------------------------------------------------------------- 专栏分割线 -----------------------------------------------…

SCSS 学习笔记 和 vscode下载live sass compiler插件配置

1、下载livelive sass compiler插件并配置 // 在 已有代码 下面 添加下面 代码&#xff0c;一般刚刚下载打开最后一行是&#xff1a;// "liveSassCompile.settings.autoprefix": [],// 所以直接 把下面复制进去保存就行"liveSassCompile.settings.autoprefix&qu…

如何进入电脑主板BIOS命令大全

介绍&#xff1a; 台式机的主板总该知道吧&#xff0c;它其实是一个一堆功能的总成硬件&#xff0c;上面不但有声卡芯片&#xff0c;网卡芯片&#xff0c;还有英特尔或者AMD的、能让CPU运行起来的芯片组&#xff0c;以及你可能听说过的什么南桥北桥什么的。笔记本的也差不多这么…

2023-8-15差分矩阵

题目链接&#xff1a;差分矩阵 #include <iostream>using namespace std;const int N 1010;int n, m, q; int a[N][N], b[N][N];void insert(int x1, int y1, int x2, int y2, int c) {b[x1][y1] c;b[x1][y2 1] - c;b[x2 1][y1] - c;b[x2 1][y2 1] c; }int main…

交通 | NeurIPS论文:深度学习结合LKH启发式算法

编者按 本次解读的文章是《结合深度学习模型与LKH启发式算法来解决旅行商问题》&#xff0c;标题原文为&#xff1a;《NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem》。这篇文章来源于南洋理工…

2023-8-18 判断子序列

题目链接&#xff1a;判断子序列 #include <iostream>using namespace std;const int N 100010;int n, m; int a[N], b[N];int main() {cin >> n >> m;for(int i 0; i < n; i) cin >> a[i];for(int i 0; i < m; i) cin >> b[i];int i …

el-table 多个表格切换多选框显示bug

今天写了个功能&#xff0c;点击左侧的树做判断&#xff0c;一级树节点显示系统页面&#xff0c;二级树节点显示数据库页面&#xff0c;三级树节点显示表页面。 数据库页面和表页面分别有2个el-table ,上面的没有多选框&#xff0c;下面的有多选框 现在出现bug&#xff0c;在…

“维度削减+逻辑回归”:如何使用PCA大幅提升乳腺癌的预测成功率?

一、引言 乳腺癌是女性中最常见的恶性肿瘤之一&#xff0c;也影响着全球范围内许多人们的健康。据世界卫生组织&#xff08;WHO&#xff09;的数据&#xff0c;乳腺癌是全球癌症发病率和死亡率最高的肿瘤之一&#xff0c;其对个体和社会的危害不可忽视。因此&#xff0c;早期乳…

opencv-人脸关键点定位

#导入工具包 from collections import OrderedDict import numpy as np import argparse import dlib import cv2#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ #http://dlib.net/files/# 参数 ap argparse.ArgumentParser() ap.add_argument("-p&quo…

【AIGC】 国内版聊天GPT

国内版聊天GPT 引言一、国内平台二、简单体验2.1 提问2.2 角色扮演2.3 总结画图 引言 ChatGPT是OpenAI发开的聊天程序&#xff0c;功能强大&#xff0c;可快速获取信息&#xff0c;节省用户时间和精力&#xff0c;提供个性化的服务。目前国产ChatGPT&#xff0c;比如文心一言&a…

5、css学习5(链接、列表)

1、css可以设置链接的四种状态样式。 a:link - 正常&#xff0c;未访问过的链接a:visited - 用户已访问过的链接a:hover - 当用户鼠标放在链接上时a:active - 链接被点击的那一刻 2、 a:hover 必须在 a:link 和 a:visited 之后&#xff0c; a:active 必须在 a:hover 之后&…

提高批量爬虫工作效率

大家好&#xff01;作为一名专业的爬虫程序员&#xff0c;我今天要和大家分享一些关于提高批量爬虫工作效率的实用技巧。无论你是要批量采集图片、文本还是视频数据&#xff0c;这些经验都能帮助你在大规模数据采集中事半功倍。废话不多说&#xff0c;让我们开始吧&#xff01;…

Netty+springboot开发即时通讯系统笔记(四)终

实时性 1.线程池多线程&#xff0c;把消息同步给其他端和对方用户&#xff0c;其中数据持久化往往是最浪费时间的操作&#xff0c;可以使用mq异步存储&#xff0c;因为其他业务不需要拿着整条数据&#xff0c;只需要这条数据的id进行操作。 2。消息校验前置&#xff0c;放在t…

vue项目预览pdf功能(解决动态文字无法显示的问题)

最近&#xff0c;因为公司项目需要预览pdf的功能&#xff0c;开始的时候找了市面上的一些pdf插件&#xff0c;都能用&#xff0c;但是&#xff0c;后面因为pdf变成了需要根据内容进行变化的&#xff0c;然后&#xff0c;就出现了需要动态生成的文字不显示了。换了好多好多的插件…

时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图)

时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图) 目录 时序预测 | MATLAB实现ELM极限学习机时间序列预测(多指标、相关图)效果一览基本介绍程序设计学习总结参考资料效果一览 基本介绍 时序预测 | MATLAB实现ELM极

3d max省时插件CG MAGIC功能中的材质参数可一键优化!

渲染的最终结果就是为了让渲染效果更加真实的体现。 对于一些操作上&#xff0c;可能还是费些时间&#xff0c;VRay可以说是在给材质做加法的路上越走越远&#xff0c;透明度、凹凸、反射等等参数细节越做越多。 对于材质参数调节的重要性大家都心里有数的。 VRay材质系统的每…