C++ 面向对象三大特性——多态

news2025/1/20 3:41:01

✅<1>主页:我的代码爱吃辣
📃<2>知识讲解:C++ 继承
☂️<3>开发环境:Visual Studio 2022
💬<4>前言:面向对象三大特性的,封装,继承,多态,今天我们研究研究C++的多态

目录

一.多态的概念

二.多态的定义及实现

1.多态的构成条件

2. 虚函数

3.虚函数的重写

4. C++11 override 和 final

5. 重载、覆盖(重写)、隐藏(重定义)的对比

三. 抽象类

1.概念

2.接口继承和实现继承

四.多态的原理

1.虚函数表

2.多态的原理

3. 动态绑定与静态绑定

 5.单继承和多继承关系的虚函数表

1. 单继承中的虚函数表

2. 多继承中的虚函数表 


一.多态的概念

多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会
产生出不同的状态。

举个栗子:比如买票这个行为,当普通人买票时,是全价买票;学生买票时,是半价买票;军人
买票时是优先买票。

再举个栗子: 几年前为了争夺在线支付市场,支付宝年底经常会做诱人的扫红包-支付-给奖励金的
活动。那么大家想想为什么有人扫的红包又大又新鲜8块、10块...,而有人扫的红包都是1毛,5
毛....。其实这背后也是一个多态行为。支付宝首先会分析你的账户数据,比如你是新用户、比如
你没有经常支付宝支付等等,那么你需要被鼓励使用支付宝,那么就你扫码金额 =random()%99;比如你经常使用支付宝支付或者支付宝账户中常年没钱,那么就不需要太鼓励你去使用支付宝,那么就你扫码金额 = random()%1;总结一下:同样是扫码动作,不同的用户扫得到的不一样的红包,这也是一种多态行为。ps:支付宝红包问题纯属瞎编,大家仅供娱乐。

C++中多态演示:

class Person
{
public:
	virtual void  buy_ticket()
	{
		cout << "这是一个成年人---->全价票" << endl;

	}
};

class Student :public Person
{
public:
	virtual void buy_ticket()
	{
		cout << "这是一个学生---->八折票" << endl;
	}
};


int main()
{
	//定义好成人对象和学生对象
	Person p;
	Student s;

	//在去买票之前他们是没有区别的
	Person& person1 = p;
	Person& person2 = s;

	//买票的学生和成人价格不一样
	person1.buy_ticket();
	person2.buy_ticket();
    
    return 0;
}

二.多态的定义及实现

1.多态的构成条件

多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了
Person。Person对象买票全价,Student对象买票半价。

那么在继承中要构成多态还有两个条件:💊💊💊💊💊

  1. 必须通过基类的指针或者引用调用虚函数
  2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写

 没有重写虚函数:

class Person{
public:
	 void  buy_ticket(){cout << "全价票" << endl;}
};

class Student :public Person{
public:
	 void buy_ticket(){cout << "八折票" << endl;}
};

int main()
{
	
	Person p;
	Student s;
	Person& person1 = p;
	Person& person2 = s;
	
	person1.buy_ticket();
	person2.buy_ticket();
	return 0;
}

 

 有虚函数重写,不是通过基类的指针或者引用调用:

class Person{
public:
	 virtual void  buy_ticket(){cout << "全价票" << endl;}
};

class Student :public Person{
public:
	 virtual void buy_ticket(){cout << "八折票" << endl;}
};

int main()
{
	Person p;
	Student s;
	
	Person person1 = p;
	Person person2 = s;
	
	person1.buy_ticket();
	person2.buy_ticket();
	return 0;
}

2. 虚函数

虚函数:即被virtual修饰的类成员函数称为虚函数,虚函数就是为多态而出现的。

	//虚函数
    virtual void  buy_ticket()
	{
		cout << "这是一个成年人---->全价票" << endl;
	}

 3.虚函数的重写

虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的
返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数。

注意:派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同,这里要求非常严格,因为重写或者是覆盖,是函数体的重写或者覆盖。

注意:在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因
为继承后基类的虚函数被继承下来了在派生类依旧保持虚函数属性),但是该种写法不是很规范,不建议这样使用。

class Person {
public:
	virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:
	//virtual void BuyTicket() { cout << "买票-半价" << endl; }
	void BuyTicket() { cout << "买票-半价" << endl; }
};

void Func(Person& p)
{
	p.BuyTicket();
}

int main()
{
	Person p1;
	Student p2;

	Func(p1);
	Func(p2);

	return 0;
}

 虚函数重写的两个例外:

1. 协变(基类与派生类虚函数返回值类型不同)
派生类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指
针或者引用,派生类虚函数返回派生类对象的指针或者引用时,称为协变。(了解)

class Person {
public:
	virtual Person* BuyTicket() { cout << "买票-全价" << endl; return nullptr; }
};
class Student : public Person {
public:
	virtual Student* BuyTicket() { cout << "买票-半价" << endl; return nullptr; }
};

void Func(Person& p)
{
	p.BuyTicket();
}

int main()
{
	Person p1;
	Student p2;

	Func(p1);
	Func(p2);

	return 0;
}

 2. 析构函数的重写(基类与派生类析构函数的名字不同)

如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,
都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。虽然函数名不相同,
看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处
理,编译后析构函数的名称统一处理成destructor。

class Person {
public:
	virtual Person* BuyTicket() { cout << "买票-全价" << endl; return nullptr; }
	virtual ~Person() { cout << "~Person()" << endl; }
};
class Student : public Person {
public:
	//virtual void BuyTicket() { cout << "买票-半价" << endl; }
	virtual Student* BuyTicket() { cout << "买票-半价" << endl; return nullptr; }
	~Student() { cout << "~Student()" << endl; }
};

int main()
{
	Person* p = new Person;
	Person* s = new Student;

	delete p;
	delete s;

	return 0;
}

4. C++11 override 和 final

1. final:修饰虚函数,表示该虚函数不能再被重写

class Car
{
public:
	virtual void Drive() final {}
};
class Benz :public Car
{
public:
	virtual void Drive() { cout << "Benz-舒适" << endl; }
};

 2. override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。

class Car {
public:
	 void Drive() {}
};
class Benz :public Car {
public:
	virtual void Drive() override { cout << "Benz-舒适" << endl; }
};

此时基类的函数并不是虚函数,所以派生类中函数没有构成重写,所以此处直接报错。

5. 重载、覆盖(重写)、隐藏(重定义)的对比💊💊💊

三. 抽象类

1.概念

在虚函数的后面写上 = 0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口
类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生
类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

抽象类就像我们我们生活一些泛型的事物,例如车,车也有油车,电车,他们都是车,但是他们的动力来源不一样。如果只是针对车这个泛型事物没有具体到哪一种车的时候,我们也不清楚他的动力来源是什么。

class Car
{
public:
	virtual void Drive() = 0;
};
class Benz :public Car
{
public:
	virtual void Drive()
	{
		cout << "Benz-柴油机" << endl;
	}
};
class BMW :public Car
{
public:
	virtual void Drive()
	{
		cout << "BMW-高能锂电池" << endl;
	}
};
void Test()
{
	Car* pBenz = new Benz;
	pBenz->Drive();
	Car* pBMW = new BMW;
	pBMW->Drive();
}

int main()
{
	Test();
    return 0;
}

2.接口继承和实现继承

普通函数的继承是一种实现继承派生类继承了基类函数,可以使用函数,继承的是函数的实
现。
虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成
多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

四.多态的原理

1.虚函数表

这里常考一道笔试题:sizeof(Base)是多少?

// 这里常考一道笔试题:sizeof(Base)是多少?
class Base
{
public:
    virtual void Func1()
    {
    cout << "Func1()" << endl;
    }
private:
    int _b = 1;
};

32位下结果:

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些
平台可能会放到对象的最后面,这个跟平台有关,我们此处使用的是VS2022),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表。那么派生类中这个表放了些什么呢?我们接着往下分析:

 针对上面的代码我们做出以下改造:

  • 我们增加一个派生类Derive去继承Base
  • Base再增加一个虚函数Func2和一个普通函数Func3
  • Derive中重写Func1,Func2,定义一个虚函数Func3
class Base
{
public:
	virtual void Func1(){cout << "Base::Func1()" << endl;}
	virtual void Func2(){cout << "Base::Func2()" << endl;}
	virtual void Func3(){cout << "Base::Func3()" << endl;}
private:
	int _b = 1;
};
class Derive : public Base
{
public:
	virtual void Func1(){cout << "Derive::Func1()" << endl;}
	virtual void Func2(){cout << "Derive::Func2()" << endl;}
private:
	int _d = 2;
};

1.派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚
表指针也就是存在这部分的,另一部分是自己的成员。

2.基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1,Func2完成了重写,所以d的虚表中存的是重写的Derive::Func1和Derive::Func2,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法。

3.另外Func3继承下来后是虚函数,所以放进了虚表,如果Derive::Func3没有重写Derive::Func3不会被放进虚表,或者Base::Func3不是虚函数,不会Derive::Func3被重写也不会放进虚表。

4.虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr(仅仅针对VS系类编译器)。

5.总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生
类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己
新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。

这里还有一个童鞋们很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在
虚表,虚表存在对象中。注意上面的回答的错的。
但是很多童鞋都是这样深以为然的。注意
虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是
他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。
那么虚表存在哪的
呢?实际我们去验证一下会发现vs下是存在代码段的。

虚表的地址和代码区(常量区)很接近。

2.多态的原理

上面分析了这个半天了那么多态的原理到底是什么?还记得这里Func函数传Person调用的
Person::BuyTicket,传Student调用的是Student::BuyTicket。

1.观察下图的红色箭头我们看到,p是指向mike对象时,p->BuyTicket在mike的虚表中找到虚
函数是Person::BuyTicket。
2. 观察下图的蓝色箭头我们看到,p是指向johnson对象时,p->BuyTicket在johson的虚表中
找到虚函数是Student::BuyTicket。
3. 这样就实现出了不同对象去完成同一行为时,展现出不同的形态。
4. 反过来思考我们要达到多态,有两个条件,一个是虚函数覆盖,一个是对象的指针或引用调
用虚函数。反思一下为什么?因为单纯的使用对象直接接受,不会拷贝虚表。
5. 再通过下面的汇编代码分析,看出满足多态以后的函数调用,不是在编译时确定的,是运行
起来以后到对象的中取找的。不满足多态的函数调用时编译时确认好的。

void Func(Person* p)
{
	p->BuyTicket();
}
int main()
{
	Person mike;
	Func(&mike);
	mike.BuyTicket();

	return 0;
}
// 以下汇编代码中跟你这个问题不相关的都被去掉了
void Func(Person* p)
{
	    ...
		p->BuyTicket();
	    // p中存的是mike对象的指针,将p移动到eax中
	    001940DE  mov     eax, dword ptr[p]
		// [eax]就是取eax值指向的内容,这里相当于把mike对象头4个字节(虚表指针)移动到了edx
		001940E1  mov     edx, dword ptr[eax]
		// [edx]就是取edx值指向的内容,这里相当于把虚表中的头4字节存的虚函数指针移动到了eax
		00B823EE  mov     eax, dword ptr[edx]
		// call eax中存虚函数的指针。这里可以看出满足多态的调用,不是在编译时确定的,是运行起来
		以后到对象的中取找的。
		001940EA  call     eax
		00头1940EC  cmp     esi, esp
}
int main()
{
	    ...
		// 首先BuyTicket虽然是虚函数,但是mike是对象,不满足多态的条件,所以这里是普通函数的调
		用转换成地址时,是在编译时已经从符号表确认了函数的地址,直接call 地址
		mike.BuyTicket();
	    00195182  lea     ecx, [mike]
		00195185  call     Person::BuyTicket(01914F6h)
		...
}

3. 动态绑定与静态绑定

  1. 静态绑定又称为前期绑定(早绑定),在程序编译期间确定了程序的行为,也称为静态多态,比如:函数重载。
  2. 动态绑定又称后期绑定(晚绑定),是在程序运行期间,根据具体拿到的类型确定程序的具体行为,调用具体的函数,也称为动态多态。
  3. 本小节之前(5.2小节)买票的汇编代码很好的解释了什么是静态(编译器)绑定和动态(运行时)绑定。

 5.单继承和多继承关系的虚函数表

1. 单继承中的虚函数表

需要注意的是在单继承和多继承关系中,下面我们去关注的是派生类对象的虚表模型,因为基类
的虚表模型前面我们已经看过了,没什么需要特别研究的。我们看下面一个问题:

class Base
{
public:
	virtual void Func1(){cout << "Base::Func1()" << endl;}
	virtual void Func2(){cout << "Base::Func2()" << endl;}
	virtual void Func3(){cout << "Base::Func3()" << endl;}
private:
	int _b = 1;
};
class Derive : public Base
{
public:
	virtual void Func1(){cout << "Derive::Func1()" << endl;}
	virtual void Func2() { cout << "Derive::Func2()" << endl; }
	virtual void Func4(){cout << "Derive::Func4()" << endl;}
private:
	int _d = 2;
};
int main()
{
	Base b;
	Derive d;
	
	return 0;
}

 这里大家仔细就会发现在派生类的虚表怎么没有Func4呢?这里是编译器的监视窗口故意隐藏了这
两个函数,也可以认为是他的一个小bug。那么我们如何查看d的虚表呢?下面我们使用代码打印
出虚表中的函数。

typedef void (*VFunc)();
void Print_VFTable(VFunc table[])
{
	int i = 0;
	//虚函数表本质是一个存虚函数指针的指针数组,
	//一般情况这个数组最后面放了一个nullptr(仅仅针对VS系类编译器)。
	while (table[i])
	{
		printf("[%d]:%p--->", i+1, table[i]);
		table[i]();
		i++;
	}
}
int main()
{
	Base b;
	Derive d;
    //取出Derive对象的前四个字节,强转成VFunc*,即函数二级指针类型
	Print_VFTable((VFunc*)(*((int*)(&d))));
	
	return 0;
}

 不难看出这里应证了我们的猜想,Derive::Func4()只是被监视窗口隐藏了。

2. 多继承中的虚函数表 

class Base1 {
public:
	virtual void func1() { cout << "Base1::func1" << endl; }
	virtual void func2() { cout << "Base1::func2" << endl; }
private:
	int b1;
};
class Base2 {
public:
	virtual void func1() { cout << "Base2::func1" << endl; }
	virtual void func2() { cout << "Base2::func2" << endl; }
private:
		int b2;
};
class Derive : public Base1, public Base2 {
public:
	virtual void func1() { cout << "Derive::func1" << endl; }
	virtual void func3() { cout << "Derive::func3" << endl; }
private:
	int d1;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{
	cout << " 虚表地址>" << vTable << endl;
	for (int i = 0; vTable[i] != nullptr; ++i)
	{
		printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
		VFPTR f = vTable[i];
		f();
	}
	cout << endl;
}
int main()
{
	Derive d;
	VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);
	PrintVTable(vTableb1);
	VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d + sizeof(Base1)));
	PrintVTable(vTableb2);
	return 0;
}

注意一个现象:

 

b2->func1();

程序在执行这句的时候,汇编多次call,和jmp,说明编译器堆底层进行了了多次封装,其中封装的原因是:

 

 ecx 寄存器存储的是this指针,所以这次封装的并且sub - 8,是为了修正this指针。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/895775.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最强自动化测试框架Playwright(34)CDPSession

在 Playwright 中&#xff0c;CDPSession 类是用于与浏览器的 Chrome DevTools Protocol (CDP) 会话进行交互的对象。CDP 是与Chromium浏览器通信的底层协议&#xff0c;它提供了许多与浏览器进行交互和控制的功能。 CDPSession 类提供了执行底层 CDP 命令的方法&#xff0c;并…

设计模式之适配器模式(Adapter)的C++实现

1、适配器模式的提出 在软件功能开发中&#xff0c;由于使用环境的改变&#xff0c;之前一些类的旧接口放在新环境的功能模块中不再适用。如何使旧接口能适用于新的环境&#xff1f;适配器可以解决此类问题。适配器模式&#xff1a;通过增加一个适配器类&#xff0c;在适配器接…

Flink安装与使用

1.安装准备工作 下载flink Apache Flink: 下载 解压 [dodahost166 bigdata]$ tar -zxvf flink-1.12.0-bin-scala_2.11.tgz 2.Flinnk的standalone模式安装 2.1修改配置文件并启动 修改&#xff0c;好像使用默认的就可以了 [dodahost166 conf]$ more flink-conf.yaml 启动 …

角色入门02----动画蓝图

使用UE4的小白人动画&#xff0c;首先将它动画资产重定向。先ue4转ue5小银人&#xff0c;在把转换后的动画ue5转ue4给这个低模人物就动画就不会很鬼畜。 进入动画创建混合空间1D,这相当于可以组合很多动画 在跑步的混合空间里设置横坐标为Speed&#xff0c;最大值为400&#xf…

DataWhale 机器学习夏令营第三期

DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.18)1.赛题理解2.缺失值分析3. 简单特征提取4. 数据可视化离散变量离散变量分布分析 DataWhale 机器学习夏令营第三期 ——用户新增预测挑战赛 学习记录一 (2023.08.18) 已跑通baseline&#xff0c;换为lightgbm基线&#…

Springboot 实践(8)springboot集成Oauth2.0授权包,对接spring security接口

此文之前&#xff0c;项目已经添加了数据库DAO服务接口、资源访问目录、以及数据访问的html页面&#xff0c;同时项目集成了spring security&#xff0c;并替换了登录授权页面&#xff1b;但是&#xff0c;系统用户存储代码之中&#xff0c;而且只注册了admin和user两个用户。在…

记一次项目内存优化--内存泄漏

需求–内存泄漏优化&#xff0c;PSS有所下降&#xff0c; OOM率减少 主要是与某个版本作基准进行对比&#xff08;一般是最新版本的前一个版本作原数据&#xff09;&#xff0c;优化后&#xff0c;PSS有所下降&#xff0c;线上OOM率减少&#xff08;Bugly版本对比&#xff09;…

网工内推 | 数通工程师,有运营商工作经验优先

01 国育产教融合教育科技&#xff08;海南&#xff09;有限公司 招聘岗位&#xff1a;通信工程师 职责描述&#xff1a; 1、负责锐捷4/5G皮基站产品的工程交付工作&#xff0c;包括现场勘测、硬件督导、开通调测、测试优化等技术交付工作&#xff1b; 2、负责锐捷4/5G皮基站网…

【探索Linux】—— 强大的命令行工具 P.5(yum工具、git 命令行提交代码)

阅读导航 前言一、软件包管理器 yum1.yum的概念yum的基本指令使用例子 二、git 命令行提交代码总结温馨提示 前言 前面我们讲了C语言的基础知识&#xff0c;也了解了一些数据结构&#xff0c;并且讲了有关C的一些知识&#xff0c;也学习了一些Linux的基本操作&#xff0c;也了…

I2S/PCM board-level 约束及同步(latencyskewbitsync)

I2S/PCM是典型的低速串口&#xff0c;在两个方向上分别有两组信号&#xff0c;我们已soc为视角分为soc-adif和外设audio-codec。 那么adif输入&#xff1a; sclk_i, ws_i, sdi 当然并不是三个输入信号同时有效&#xff0c;只有adif RX slave时&#xff0c;三个输入都会有效…

贷款公司精准获客,快速找到目标客户,直击获客高点!

目前&#xff0c;运营商的大数据技术正在逐步发展壮大&#xff0c;并已广泛应用于各个行业。运营商大数据市场有待发展的潜在行业发展趋势难以预料&#xff0c;整体能源规模达数万亿元。运营商大数据与三家网络运营商进行了深度战略合作&#xff0c;利用移动电信运营商的大数据…

使用coloc 进行 QTL 共定位Colocalization

GWAS找到显著信号位点后&#xff0c;需要解释显著信号位点如何影响表型。 常见的一个解释方法是共定位分析。 主流的共定位分析包括&#xff1a; 1&#xff09;GWAS和eQTL共定位&#xff1b; 2&#xff09;GWAS和sQTL共定位&#xff1b; 3&#xff09;GWAS和meQTL共定位&am…

上一个说软件测试简单的,已经被面试官问emo了···

现在已经过了 ”不会但我会学“ 就能感动面试官的时代&#xff0c;随着供需关系的变化&#xff0c;不论是对于面试官还是面试者&#xff0c;面试的成本越来越高。为了筛选到更优秀的程序员&#xff0c;面试官们可谓是绞尽了脑汁&#xff0c;”面试造火箭&#xff0c;工作拧螺丝…

PS丢失d3dcompiler_47.dll文件怎么办(附详细修复方法)

我们在安装PS等软件的时候&#xff0c;有可能安装完之后出现以下问题&#xff08;特别是win10或者win11系统&#xff09; 错误&#xff1a; 打开PS的时候出现这个错误&#xff1a;无法启动此程序&#xff0c;因为计算机中丢失D3DCOMPILER_47.dll。尝试重新安装该程序以解决此问…

03-微信小程序常用组件-视图容器组件

微信小程序组件-视图容器 文章目录 视图容器view 视图容器案例代码 swiper 滑块视图容器案例代码indicator-color 微信小程序包含了六大组件&#xff1a; 视图容器、 基础内容、 导航、 表单、 互动和 导航。这些组件可以通过WXML和WXSS进行布局和样式设置&#xff0c;从…

CFD特性FPmarkets澳福认为了解这11种足够了

CFD在交易中很重要&#xff0c;但CFD特性很多投资者不了解&#xff0c;FPmarkets澳福认为了解这11种足够了&#xff1a; 1. 投资者通过标的资产价格价值的变化获利&#xff0c;而不拥有标的资产。 2. 差价合约交易没有固定的到期日。 3. 与期货交易类似&#xff0c;差价合约交易…

海外问卷脚本机器人哪里哪里有?是真的吗?

大家好&#xff0c;我是橙河老师&#xff0c;今天讲一讲海外问卷项目能不能用脚本操作&#xff1f; 最近没怎么写文章&#xff0c;确实比较忙。我本人每天至少要面对5-10个客户咨询项目&#xff0c;每隔一段时间&#xff0c;都会有人问我&#xff1a;操作海外问卷有没有脚本&a…

文字点选验证码识别(上)-YOLO位置识别

声明 本文以教学为基准、本文提供的可操作性不得用于任何商业用途和违法违规场景。 本人对任何原因在使用本人中提供的代码和策略时可能对用户自己或他人造成的任何形式的损失和伤害不承担责任。 如有侵权,请联系我进行删除。 文章中没有代码,只有过程思路,请大家谨慎订阅。…

集简云简化流程模板,轻松实现工作流程自动化

集简云平台内置大量自动化流程模板&#xff0c;用户可以在“模板中心”搜索应用名称&#xff0c;选择适合自己的场景&#xff0c;直接使用。本期分享集简云自动化工作流程。 模板推荐 模板1&#xff1a;小鹅通新增订单后同步到seatable并更新微伴助手用户信息 集成应用&#…

redis 存储结构原理 1

关于 redis 相信大家都不陌生了&#xff0c;之前有从 0 -1 分享过 redis 的基本使用方式&#xff0c;用起来倒是都没有啥问题了&#xff0c;不过还是那句话&#xff0c;会应用之后&#xff0c;我们必须要究其原理&#xff0c;知其然知其所以然 今天我们来分享一下关于 redis 的…