模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)

news2025/3/10 14:45:18

模型预测

  • 一、导入关键包
  • 二、如何载入、分析和保存文件
  • 三、修改缺失值
    • 3.1 众数
    • 3.2 平均值
    • 3.3 中位数
    • 3.4 0填充
  • 四、修改异常值
    • 4.1 删除
    • 4.2 替换
  • 五、数据绘图分析
    • 5.1 饼状图
      • 5.1.1 绘制某一特征的数值情况(二分类)
    • 5.2 柱状图
      • 5.2.1 单特征与目标特征之间的图像
      • 5.2.2 多特征与目标特征之间的图像
    • 5.3 折线图
      • 5.3.1 多个特征之间的关系图
    • 5.4 散点图
  • 六、特征选择
    • 6.1、相关性分析
      • 6.1.1 皮尔逊相关系数
      • 6.1.2 斯皮尔曼相关系数
      • 6.1.3 肯德尔相关系数
      • 6.1.4 计算热力图
    • 6.2 主成分分析
    • 6.3 线性判别分析
  • 七、数据归一化
  • 八、模型搭建
  • 九、模型训练
  • 十、评估模型
  • 十一、预测模型

一、导入关键包

# 导入数据分析需要的包
import pandas as pd
import numpy as np
# 可视化包
import seaborn as sns
sns.set(style="whitegrid")
import matplotlib.pyplot as plt
%matplotlib inline
# 忽略警告信息
import warnings
warnings.filterwarnings('ignore')
# 导入数据分析需要的包
import pandas as pd
import numpy as np
from datetime import datetime

# 构建多个分类器
from sklearn.ensemble import RandomForestClassifier          # 随机森林
from sklearn.svm import SVC, LinearSVC                       # 支持向量机
from sklearn.linear_model import LogisticRegression          # 逻辑回归
from sklearn.neighbors import KNeighborsClassifier           # KNN算法
from sklearn.naive_bayes import GaussianNB                   # 朴素贝叶斯
from sklearn.tree import DecisionTreeClassifier              # 决策树分类器
from xgboost import XGBClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier   
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV  # 网格搜索
np.set_printoptions(suppress=True)

# 显示中文
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False

二、如何载入、分析和保存文件

df=pd.read_csv('data/dataset.csv')


df.head(5)# 查看前几列数据
df.tail() # 返回CSV文件的最后几行数据。
df.info() # 显示CSV文件的基本信息,包括数据类型、列数、行数、缺失值等。
df.describe()# 对CSV文件的数值型数据进行统计描述,包括计数、均值、标准差、最小值、最大值等。
df.shape()# 返回CSV文件的行数和列数。
df['IS_WX'].unique()  # 返回CSV文件中某一列的唯一值。
df.value_counts()# 计算CSV文件中某一列中每个值的出现次数。
df.groupby('col1')['col2'] # 按照某一列的值进行分组,并对其他列进行聚合操作,如求和、计数、平均值等。
df.sort_values(by='col1') # 按照某一列的值进行排序。
df.pivot_table(values='C', index='A', columns='B', aggfunc='mean')# 创建透视表,根据指定的行和列对数据进行汇总和分析。

# 保存处理后的数据集
df.to_csv('data/Telecom_data_flag.csv')

三、修改缺失值

3.1 众数

# 对每一列属性采用相应的缺失值处理方式,通过分析发现这类数据都可以采用众数的方式解决
df.isnull().sum()
modes = df.mode().iloc[0]
print(modes)
df = df.fillna(modes)
print(df.isnull().sum())

3.2 平均值

mean_values = df.mean()
print(mean_values)
df = df.fillna(mean_values)
print(df.isnull().sum())

3.3 中位数

median_values = df.median()
print(median_values)
df = df.fillna(median_values)
print(df.isnull().sum())

3.4 0填充

df = df.fillna(0)
print(df.isnull().sum())

四、修改异常值

4.1 删除

1.删除DataFrame表中全部为NaN的行

	your_dataframe.dropna(axis=0,how='all') 

2.删除DataFrame表中全部为NaN的列

	your_dataframe.dropna(axis=1,how='all') 

3.删除表中含有任何NaN的行

	your_dataframe.dropna(axis=0,how='any') 

4.删除表中含有任何NaN的列

  your_dataframe.dropna(axis=1,how='any')

4.2 替换

这里的替换可以参考前文的中位数,平均值,众数,0替换等。

	replace_value = 0.0
	# 这里设置 inplace 为 True,能够直接把表中的 NaN 值替换掉
	your_dataframe.fillna(replace_value, inplace=True)
	# 如果不设置 inplace,则这样写就行
	# new_dataframe = your_dataframe.fillna(replace_value)

五、数据绘图分析

5.1 饼状图

5.1.1 绘制某一特征的数值情况(二分类)

# 查看总体客户流失情况
churnvalue = df["LEAVE_FLAG"].value_counts()
labels = df["LEAVE_FLAG"].value_counts().index
plt.pie(churnvalue,
        labels=["未流失","流失"],
        explode=(0.1,0),
        autopct='%.2f%%', 
        shadow=True,)
plt.title("客户流失率比例",size=24)
plt.show()
# 从饼形图中看出,流失客户占总客户数的很小的比例,流失率达3.58%

在这里插入图片描述

5.2 柱状图

5.2.1 单特征与目标特征之间的图像

# 粘性/忠诚度分析  包括绑定银行卡张数
fig, axes = plt.subplots(1, 1, figsize=(12,12))
plt.subplot(1,1,1) 
# palette参数表示设置颜色
gender=sns.countplot(x='BANK_NUM',hue="LEAVE_FLAG",data=df,palette="Pastel2") 
plt.xlabel("绑定银行卡张数",fontsize=16)
plt.title("LEAVE_FLAG by BANK_NUM",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)     # 设置坐标轴字体大小
# 从此表可知,对于没有绑定银行卡的用户流失情况会更大,应该加强督促用户绑定银行卡

在这里插入图片描述

# 查看正常用户与流失用户在上网流量上的差别
plt.figure(figsize=(10,6))
g = sns.FacetGrid(data = df,hue = 'LEAVE_FLAG', height=4, aspect=3)
g.map(sns.distplot,'BYTE_ALL',norm_hist=True)
g.add_legend()
plt.ylabel('density',fontsize=16)
plt.xlabel('BYTE_ALL',fontsize=16)
plt.xlim(0, 100)
plt.tick_params(labelsize=13)     # 设置坐标轴字体大小
plt.tight_layout()
plt.show()
# 从上图看出,上网流量少的用户流失率相对较高。

在这里插入图片描述

5.2.2 多特征与目标特征之间的图像

这里绘制的多个二分类特征的情况是与目标特征之间的关系

# 粘性/忠诚度分析  包括是否捆绑微信、是否捆绑支付宝
# sns.countplot()函数绘制了"是否使用支付宝"(IS_ZFB)这一列的柱状图,并根据"LEAVE_FLAG"(是否离网)进行了颜色分类。
fig, axes = plt.subplots(1, 2, figsize=(12,12))
plt.subplot(1,2,1) 
# palette参数表示设置颜色
partner=sns.countplot(x="IS_ZFB",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用支付宝(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_ZFB",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小

plt.subplot(1,2,2)
seniorcitizen=sns.countplot(x="IS_WX",hue="LEAVE_FLAG",data=df,palette="Pastel2")
plt.xlabel("是否使用微信(1代表使用,0代表使用)")
plt.title("LEAVE_FLAG by IS_WX",fontsize=18)
plt.ylabel('count',fontsize=16)
plt.tick_params(labelsize=12)   # 设置坐标轴字体大小
# 从此表可知  支付宝绑定目前对于用户流失没有影响,微信的绑定影响会稍微大点,可能是微信用户用的较多

在这里插入图片描述

# 异常性 根据用户流失情况来结合判定
covariables=["CMPLNT_NUM", "STOP_COUNT"]
fig,axes=plt.subplots(1,2,figsize=(20,12))
for i, item in enumerate(covariables):
    '''
    0,'CMPLNT_NUM'
    1,'STOP_COUNT'
    '''
    plt.subplot(1,2,(i+1))
    ax=sns.countplot(x=item,hue="LEAVE_FLAG",data=df,palette="Set2")
    plt.xlabel(str(item),fontsize=16)
    plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
    plt.title("LEAVE_FLAG by "+ str(item),fontsize=20)
    i=i+1
plt.tight_layout()
plt.show()
# 从此表可知 最近6个月累计投诉次数间接性的决定了用户的流失,停机天数也和用户流失成正相关。

在这里插入图片描述

5.3 折线图

5.3.1 多个特征之间的关系图

# 用户的成长性分析,结合用户流失情况。
# 包括流量趋势、语音通话次数趋势、语音通话时长趋势、交往圈趋势
# 提取特征数据列
feature1 = df["LIULIANG_B"]
feature2 = df["YUYING_COUNT"]
feature3 = df["YUYING_B"]
feature4 = df["JIAOWANG_B"]

# 绘制折线图
plt.plot(feature1, label="LIULIANG_B")
plt.plot(feature2, label="YUYING_COUNT")
plt.plot(feature3, label="YUYING_B")
plt.plot(feature4, label="JIAOWANG_B")

# 添加标题和标签
plt.title("Trend of User growth")
plt.xlabel("Index")
plt.ylabel("Value")

# 添加图例
plt.legend()

# 显示图表
plt.show()
# 从此图可以发现针对流量趋势来说,用户的波动是最大的。

在这里插入图片描述

5.4 散点图

df.plot(x="SERV_ID_COUNT", y="CDR_NUM", kind="scatter", c="red")
plt.show()

这段代码的作用是绘制一个以"SERV_ID_COUNT"为横轴,"CDR_NUM"为纵轴的散点图,并将散点的颜色设置为红色。通过这个散点图,可以直观地观察到"SERV_ID_COUNT"和"CDR_NUM"之间的关系。
在这里插入图片描述

六、特征选择

6.1、相关性分析

6.1.1 皮尔逊相关系数

plt.figure(figsize=(16,8))
df.corr()['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()
# 从图可以直观看出,YUYING_COUNT 、YUYING_B、IS_ZFB、BALANCE、JIAOWANG_B、IS_WX这六个变量与LEAVE_FLAG目标变量相关性最弱。

在这里插入图片描述

6.1.2 斯皮尔曼相关系数

plt.figure(figsize=(16,8))
df.corr(method='spearman')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.1.3 肯德尔相关系数

plt.figure(figsize=(16,8))
df.corr(method='kendall')['LEAVE_FLAG'].sort_values(ascending = False).plot(kind='bar')
plt.tick_params(labelsize=14)     # 设置坐标轴字体大小
plt.xticks(rotation=45)         # 设置x轴文字转向
plt.title("Correlations between LEAVE_FLAG and variables",fontsize=20)
plt.show()

6.1.4 计算热力图

# 计算相关性矩阵
corr_matrix = df.corr()

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap", fontsize=16)
plt.show()

6.2 主成分分析

PCA思想:构造原变量的一系列线性组合形成几个综合指标,以去除数据的相关性,并使低维数据最大程度保持原始高维数据的方差信息

PCA代码:

# -*- coding:utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn.decomposition import PCA           # 加载PCA算法包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import svm
import pandas as pd


df = pd.read_csv(r'D:\Python\test\iris.csv')
X = df.iloc[:, 0:4]
Y = df.iloc[:, 4]
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
pca = PCA(n_components=2)       # 加载PCA算法,设置降维后主成分数目为2
# n_components的值不能大于n_features(特征数)和n_classes(类别数)之间的较小值减1。
reduced_x = pca.fit_transform(X)  # 对样本进行降维
reduced_x = pd.DataFrame(reduced_x)

# SVM分类
x_train, x_test, y_train, y_test = train_test_split(reduced_x, Y, test_size=0.2)
clf = svm.SVC(gamma='scale', decision_function_shape="ovr")    # 一对多法
# clf = svm.SVC(gamma='scale', decision_function_shape='ovo')  # 一对一法
clf.fit(x_train, y_train.astype('int'))
y_pred = clf.predict(x_test)


# 可视化,画分类结果图
N, M = 500, 500  # 横纵各采样多少个值
x1_min, x2_min = x_train.min(axis=0)
x1_max, x2_max = x_train.max(axis=0)
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2)  # 生成网格采样点
x_show = np.stack((x1.flat, x2.flat), axis=1)  # 测试点
y_predict = clf.predict(x_show)
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.pcolormesh(x1, x2, y_predict.reshape(x1.shape), cmap=cm_light)
plt.scatter(x_train.iloc[:, 0], x_train.iloc[:, 1], c=y_train, cmap=cm_dark, marker='o', edgecolors='k')
plt.grid(True, ls=':')
plt.show()

PCA结果:
在这里插入图片描述

6.3 线性判别分析

LDA思想:最早提出是为了解决生物问题的分类问题,有监督的线性降维。使用数据的类别信息,将高维的样本线性投影到低维空间中,使得数据样本在低维空间中,数据的类别区分度最大

LDA代码:

# 1.导入所需的库和模块:
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.datasets import load_iris

# 2.加载数据集:
iris = load_iris()
X = iris.data
y = iris.target

# 3.创建一个LDA对象并拟合数据:
# 在这里,n_components参数指定要保留的主成分数量。
lda = LinearDiscriminantAnalysis(n_components=2)
X_lda = lda.fit_transform(X, y)

# 4.可以使用以下代码可视化结果:
plt.scatter(X_lda[:, 0], X_lda[:, 1], c=y)
plt.xlabel('LD1')
plt.ylabel('LD2')
plt.show()

LDA结果:
在这里插入图片描述

七、数据归一化

特征主要分为连续特征和离散特征,其中离散特征根据特征之间是否有大小关系又细分为两类。

  • 连续特征:一般采用归一标准化方式处理。
  • 离散特征:特征之间没有大小关系。
  • 离散特征:特征之间有大小关联,则采用数值映射。
# 通过归一化处理使特征数据标准为1,均值为0,符合标准的正态分布,
# 降低数值特征过大对预测结果的影响
# 除了目标特征全部做归一化,目标特征不用做,归一化会导致预测结果的解释变得困难
from sklearn.preprocessing import StandardScaler  
# 实例化一个转换器类
scaler = StandardScaler(copy=False)
target = df["LEAVE_FLAG"]
# 提取除目标特征外的其他特征
other_features = df.drop("LEAVE_FLAG", axis=1)
# 对其他特征进行归一化
normalized_features = scaler.fit_transform(other_features)
# 将归一化后的特征和目标特征重新组合成DataFrame
normalized_data = pd.DataFrame(normalized_features, columns=other_features.columns)
normalized_data["LEAVE_FLAG"] = target
normalized_data.head()

八、模型搭建

# 深拷贝
X=normalized_data.copy()
X.drop(['LEAVE_FLAG'],axis=1, inplace=True)
y=df["LEAVE_FLAG"]
#查看预处理后的数据
X.head()

# 建立训练数据集和测试数据集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.3, random_state = 0)
print("原始训练集包含样本数量: ", len(X_train))
print("原始测试集包含样本数量:  ", len(X_test))
print("原始样本总数: ", len(X_train)+len(X_test))

# 使用分类算法 
Classifiers=[
            ["RandomForest",RandomForestClassifier()],
            ["LogisticRegression",LogisticRegression(C=1000.0, random_state=30, solver="lbfgs",max_iter=100000)],
            ["NaiveBayes",GaussianNB()],
            ["DecisionTree",DecisionTreeClassifier()],
            ["AdaBoostClassifier", AdaBoostClassifier()],
            ["GradientBoostingClassifier", GradientBoostingClassifier()],
            ["XGB", XGBClassifier()]
]

九、模型训练

from datetime import datetime
import pickle
import joblib

def get_current_time():
    current_time = datetime.now()
    formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S")
    return current_time, formatted_time

Classify_result=[]
names=[]
prediction=[]
i = 0

for name, classifier in Classifiers:
    start_time, formatted_time = get_current_time()
    print("**********************************************************************")
    print("第{}个模型训练开始时间:{}  模型名称为:{}".format(i+1, formatted_time, name))
    classifier = classifier
    classifier.fit(X_train, y_train)
    y_pred = classifier.predict(X_test)
    recall = recall_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    f1score = f1_score(y_test, y_pred)
    model_path = 'models/{}_{}_model.pkl'.format(name, round(precision, 5))
    print("开始保存模型文件路径为:{}".format(model_path))
    # 保存模型方式1
    #     with open('models/{}_{}_model.pkl'.format(name, precision), 'wb') as file:
    #         pickle.dump(classifier, file)
    #     file.close()
    # 保存模型方式2
    joblib.dump(classifier, model_path)
    
    end_time = datetime.now()  # 获取训练结束时间
    print("第{}个模型训练结束时间:{}".format(i+1, end_time.strftime("%Y-%m-%d %H:%M:%S")))
    print("训练耗时:", end_time - start_time)

    # 打印训练过程中的指标
    print("Classifier:", name)
    print("Recall:", recall)
    print("Precision:", precision)
    print("F1 Score:", f1score)
    print("**********************************************************************")
    
    # 保存指标结果
    class_eva = pd.DataFrame([recall, precision, f1score])
    Classify_result.append(class_eva)
    
    name = pd.Series(name)
    names.append(name)
    
    y_pred = pd.Series(y_pred)
    prediction.append(y_pred)
    
    i += 1

在这里插入图片描述

十、评估模型

召回率(recall)的含义是:原本为对的当中,预测为对的比例(值越大越好,1为理想状态)

精确率、精度(precision)的含义是:预测为对的当中,原本为对的比例(值越大越好,1为理想状态)

F1分数(F1-Score)指标综合了Precision与Recall的产出的结果

F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

classifier_names=pd.DataFrame(names)
# 转成列表
classifier_names=classifier_names[0].tolist()
result=pd.concat(Classify_result,axis=1)
result.columns=classifier_names
result.index=["recall","precision","f1score"]
result

在这里插入图片描述

十一、预测模型

对于h5模型

from keras.models import load_model
model = load_model('lstm_model.h5')
pred = model.predict(X, verbose=0)
print(pred)

对于pkl模型

loaded_model = joblib.load('models/{}_model.pkl'.format(name))

由于没有预测数据集,选择最后n条数为例进行预测。

# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)

# 使用上述得到的最优模型
model = GradientBoostingClassifier()

model.fit(X_train,y_train)
pred_y = model.predict(pred_x) # 预测值

# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))
# 由于没有预测数据集,选择最后n条数为例进行预测。
n = 500 # 预测的数量
pred_id = SERV_ID.tail(n)
# 提取预测数据集特征(如果有预测数据集,可以一并进行数据清洗和特征提取)
pred_x = X.tail(n)
# 加载模型
loaded_model = joblib.load('models/GradientBoostingClassifier_0.77852_model.pkl')
# 使用加载的模型进行预测
pred_y = loaded_model.predict(pred_x)
# 预测结果
predDf = pd.DataFrame({'SERV_ID':pred_id, 'LEAVE_FLAG':pred_y})
print("*********************原始的标签情况*********************")
print(df.tail(n)['LEAVE_FLAG'].value_counts())
print("*********************预测的标签情况*********************")
print(predDf['LEAVE_FLAG'].value_counts())
print("*********************预测的准确率*********************")
min1 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[0],predDf['LEAVE_FLAG'].value_counts()[0])
min2 = min(df.tail(n)['LEAVE_FLAG'].value_counts()[1],predDf['LEAVE_FLAG'].value_counts()[1])
print("{}%".format(round((min1+min2)/n,3)*100))

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/894485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

花生十三 判断推理(三)分析类、推出类

分析类 题型 真假分析 定义:孰真孰假的真假话分析,命题真假无法确定,无法利用推出关系解题 解题思路 矛盾法(三种矛盾):A和非A,“A或B” 与“非A且非B” 技巧:一“找”矛盾&am…

在ARM服务器上一键安装Proxmox VE(以在Oracle Cloud VPS上为例)(甲骨文)

前言 如题,具体用到的说明文档如下 virt.spiritlhl.net 具体流程 首先是按照说明,先得看看自己的服务器符不符合安装 Proxmox VE的条件 https://virt.spiritlhl.net/guide/pve_precheck.html#%E5%90%84%E7%A7%8D%E8%A6%81%E6%B1%82 有提到硬件和软…

C# 读取pcd、ply点云文件数据

最近研究了下用pcl读取点云数据,又做了个C#的dll,方便读取,同样这个dll基于pcl 最新版本1.13.1版本开发。 上次做的需要先得到点云长度,再获取数据。这次这个定义了一个PointCloudXYZ类来存数据。将下面的dll拷贝到可执行目录下&a…

边缘网络的作用及管理工具

自从引入软件即服务 (SaaS) 以来,它一直引领着全球按需软件部署创新的竞赛,它提供的灵活性以及其云计算架构带来的易于集成使其成为交付业务应用程序的标准。 在 SaaS 模型中,最佳用户体验的三重奏涉及无缝设置、低延…

20230818 数据库自整理部分

并发事务 脏读 一个事务读取到另一事务还没有提交的数据 事务B读取了事务A还没有提交的数据 不可重复读 一个事务先后读取同一条记录,但是两次读取的数据不同,称之为不可重复读 查询出来的数据不一样 1步骤b还没有提交 3步骤b已经提交 幻读 一个…

利用dayj转换查询时间获取当前周月年最后一天

利用dayj转换查询时间 queryForm 查询参数对象 switch 区分选择时间类型 日 周 月 年 计算结束时间 dayjs(element).endOf("week").format("YYYY-MM-DD") 当前周结束时间 日期时间查询框配置参数格式 {label: "",width: 220,key: "…

中期国际:MT4挂单和止损设置教程:善用限价和止损单来管理风险

在外汇交易中,合理设置挂单和止损是保护资金和管理风险的重要手段。MT4平台提供了便捷的挂单和止损功能,帮助交易者更好地控制交易风险。本文将为您介绍如何善用限价和止损单来管理风险,以及在MT4平台上的操作步骤。 一、设置限价挂单 限价挂…

ZooKeeper单机服务器启动

ZooKeeper服务器的启动,大体可以分为以下五个主要步骤:配置文件解析、初始化数据管理器、初始化网络I/O管理器、数据恢复和对外服务。下图所示是单机版ZooKeeper服务器的启动流程图。 预启动 预启动的步骤如下。 (1)统一由QuorumPeerMain作为启动类。 …

游乐场vr设备虚拟游乐园vr项目沉浸体验馆

在景区建设一个VR游乐场项目可以为游客提供一种新颖、刺激和沉浸式的游乐体验。提高游客的体验类型,以及景区的类目,从而可以吸引更多的人来体验。 1、市场调研:在决定建设VR游乐场项目之前,需要进行市场调研,了解当地…

YOLOv2和YOLOv3基础

目录 v2改进网络结构先验框感受野 V3多scale残差网络架构先验框softmax层代替 v2 改进 网络结构 先验框 感受野 V3 多scale 残差 网络架构 先验框 softmax层代替

项目管理系统是什么?能干什么?有什么功能?一文看懂

阅读本文您可以了解:1、项目任务管理系统是什么;2、项目任务管理系统的作用;3、项目任务管理系统的功能 一、什么是项目任务管理 项目任务管理是指运用系统的理论方法,在有限的条件和资源下,对项目从开始到结束的全流…

jvm-类加载子系统

1.内存结构概述 类加载子系统负责从文件系统或网络中加载class文件,class文件在文件开头有特定的文件标识 ClassLoader只负责class文件的加载,至于它是否运行,则由Execution Engine决定 加载的类信息存放于一块称为方法区的内存空间&#xff…

英特尔NUC12发烧友套件(蝰蛇峡谷)评测,适合设计者的迷你主机

英特尔的下一代计算单元(NUC)系列迷你个人电脑不断发展,现在已经拥有真正的英特尔Arc游戏硬件。NUC 12蝰蛇峡谷是第一款采用英特尔Arc专用图形处理器的NUC,具体来说,是搭载了Arc A770M移动GPU和16GB独立显存。配备Core…

【数据分享】1901-2022年1km分辨率逐年最低气温栅格数据(免费获取/全国/分省)

气温数据是我们在各项研究中最常用的气象指标之一!之前我们给大家分享过1901-2022年1km分辨率逐月最低气温栅格数据(可查看之前的文章获悉详情)!该数据来源于国家青藏高原科学数据中心,这儿的逐月最低气温是当月每日最…

Android 14新增复制粘贴方式,解析工作原理

安卓14为用户提供了一种更简单的方式来在应用程序之间复制和粘贴内容,这肯定是你现在想在安卓14测试版或未来几个月该软件在你的安卓手机上推出时尝试的。 一旦更新在你的手机上(无论是测试版还是其他版本),你只需点击并按住你想…

高忆管理:药店零售概念回落,开开实业走低,此前7日大涨超80%

药店零售概念18日盘中大幅下挫,到发稿,华人健康跌逾11%,漱玉布衣、塞力医疗跌超9%,重药控股、浙江震元、榜首医药等跌超7%,药易购跌超6%,开开实业跌超3%。 值得注意的是,开开实业此前7个交易日斩…

单因素多变量方差分析

多变量方差分析:是对多个独立变量是否受单个或多个因素影响而进行的方差分析。它不仅能够分析多个因素对观测变量的独立影响,更能够分析多个因素的交互作用能否对观测变量产生影响。本章以单因素多变量分析为例,即一个分组变量和多个欲分析的…

这几点,RunnerGo领先太多了

在用jmeter做性能测试时想看完整一点的测试报告,想配置阶梯模式来压测,想配置不同的接口并发这些都需要安装插件并且影响机器性能,想做自动化测试还得放到jenkins,这些配置起来太繁琐。今天给大家推荐一款测试平台RunnerGo&#x…

如何禁止windows系统自动更新

自从升级到win11之后,发现更新插件的频率高得有点过分,基本上每周都有提醒让你更新软件。 对于我这种经常半年都不关机的使用者,这玩意真的蛮烦躁的,关键更新的内容我看了都很无聊。 系统到是给了暂停更新的功能,但是…

flink jira 提交开源bug

注册apache issue账号,并申请flink空间的权限后. 提问题/bug 查看已经提交的问题: