PSP - 开源可训练的蛋白质结构预测框架 OpenFold 的环境配置

news2024/11/24 3:19:32

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132334671

Img

Paper: OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

  • OpenFold: 重新训练 AlphaFold2 揭示对于学习机制和泛化能力的新见解

OpenFold 是可训练的开源实现用于模拟 AlphaFold2 的结构预测能力,主要特点如下:

  • 训练和性能:从头开始训练 OpenFold,并且达到与 AlphaFold2 相当的预测精度。同时 OpenFold 比 AlphaFold2 更快、更节省内存,支持在 PyTorch 框架下运行。
  • 学习机制:通过分析 OpenFold 在训练过程中预测的结构,发现一些有趣的现象,例如空间维度、二级结构元素和三级尺度的分阶段学习,以及低维 PCA 投影的近似性。
  • 泛化能力:通过使用不同大小和多样性的训练集,以及在结构分类上剔除部分训练数据,来评估 OpenFold 对于未见蛋白质折叠空间的泛化能力。发现 OpenFold 即使在极端缩减的训练集上,也能表现出惊人的鲁棒性和准确性。

GitHub: aqlaboratory/openfold


1. 结构推理

准备模型文件 finetuning_ptm_2.pt ,参考 Huggingface - OpenFold:

pip install bypy
bypy info
bypy downfile /huggingface/openfold/finetuning_ptm_2.pt finetuning_ptm_2.pt

测试的推理命令,如下:

python3 run_pretrained_openfold.py \
mydata/test \
af2-data-v230/pdb_mmcif/mmcif_files \
--uniref90_database_path af2-data-v230/uniref90/uniref90.fasta \
--mgnify_database_path af2-data-v230/mgnify/mgy_clusters_2022_05.fa \
--pdb70_database_path af2-data-v230/pdb70/pdb70 \
--uniclust30_database_path msa_databases/deepmsa2/uniclust30/uniclust30_2018_08 \
--output_dir mydata/output \
--bfd_database_path af2-data-v230/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
--model_device "cuda:0" \
--jackhmmer_binary_path /opt/openfold/hhsuite-speed/jackhmmer \
--hhblits_binary_path /opt/conda/envs/openfold/bin/hhblits \
--hhsearch_binary_path /opt/conda/envs/openfold/bin/hhsearch \
--kalign_binary_path /opt/conda/envs/openfold/bin/kalign \
--config_preset "model_1_ptm" \
--openfold_checkpoint_path openfold/resources/openfold_params/finetuning_ptm_2.pt

运行日志,如下:

INFO:openfold/openfold/utils/script_utils.py:Loaded OpenFold parameters at openfold/resources/openfold_params/finetuning_ptm_2.pt...
INFO:openfold/run_pretrained_openfold.py:Generating alignments for A...
INFO:openfold/openfold/utils/script_utils.py:Running inference for A...
INFO:openfold/openfold/utils/script_utils.py:Inference time: 10.128928968682885
INFO:openfold/run_pretrained_openfold.py:Output written to mydata/output/predictions/A_model_1_ptm_unrelaxed.pdb...
INFO:openfold/run_pretrained_openfold.py:Running relaxation on mydata/output/predictions/A_model_1_ptm_unrelaxed.pdb...
INFO:openfold/openfold/utils/script_utils.py:Relaxation time: 11.812019010074437
INFO:openfold/openfold/utils/script_utils.py:Relaxed output written to mydata/output/predictions/A_model_1_ptm_relaxed.pdb...

替换高性能的 Jackhmmer,位置如下:

cp backup/hhsuite-speed-3.3.2/jackhmmer /opt/openfold/hhsuite-speed/jackhmmer

模型推理的输出,如下:

alignments/  		# MSA文件,与 AF2 相同
predictions/		# 预测结果
timings.json		# 时间
tmp_2711.fasta	# 缓存fasta

其中,在 timings.json中,缓存推理耗时,即:

{"inference": 12.08716268837452}

其中,在 alignments/A 文件夹中,包括 MSA 文件,序列数量如下:

mgnify_hits.a3m			# 56 行
pdb70_hits.hhr			# 159 行
uniref90_hits.a3m		# 58 行
bfd_uniref_hits.a3m

注意:与 AF2 不同的是,OpenFold 是 a3m 格式,而 AF2 是 sto 格式。

其中,在 predictions 文件夹中,默认只包括 1 个预测的结构,以及 Relax 的结构,如下:

A_model_1_ptm_relaxed.pdb
A_model_1_ptm_unrelaxed.pdb
timings.json

预测结果如下,其中黄色是 Reference 结构,深蓝色是 AF2 的单模型预测结果,浅蓝色是 OpenFold 的 finetuning_ptm_2.pt 模型预测结果

  • AF2:{'TMScore': 0.9036, 'RMSD(local)': 1.66, 'Align.Len.': 117, 'DockQ': 0.0}
  • OpenFold:{'TMScore': 0.8601, 'RMSD(local)': 1.7, 'Align.Len.': 115, 'DockQ': 0.0}

即:
Img


2. 环境配置

构建 base docker 环境,基于 AF2 的 docker,即:

nvidia-docker run -it --name openfold-[your name] -v [nfs path]:[nfs path] af2:v1.02

2.1 配置 conda 与 pip 高速环境

在安装环境时,建议使用国内的 conda 与 pip 源,可以加速下载。

进入 docker 之后,首先修改 conda 与 pip 的环境配置。创建或修改 ~/.condarc,即:

vim ~/.condarc

# 添加如下信息

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
channel_priority: disabled
allow_conda_downgrades: true

在 docker 中,存在默认的 pip 环境,而且优先级较高,即删除 pip 配置,再修改 pip 配置,避免失效或冲突,即:

rm /opt/conda/pip.conf
rm /root/.config/pip/pip.conf

再修改配置 ~/.pip/pip.conf,建议使用 阿里云 的 pip 源,清华源缺少部分安装包,即:

vim ~/.pip/pip.conf

# 添加如下信息

# This file has been autogenerated or modified by NVIDIA PyIndex.
# In case you need to modify your PIP configuration, please be aware that
# some configuration files may have a priority order. Here are the following 
# files that may exists in your machine by order of priority:
#
# [Priority 1] Site level configuration files
#       1. `/opt/conda/pip.conf`
#
# [Priority 2] User level configuration files
#       1. `/root/.config/pip/pip.conf`
#       2. `/root/.pip/pip.conf`
#
# [Priority 3] Global level configuration files
#       1. `/etc/pip.conf`
#       2. `/etc/xdg/pip/pip.conf`

[global]
no-cache-dir = true
index-url = http://mirrors.aliyun.com/pypi/simple/
extra-index-url = https://pypi.ngc.nvidia.com
trusted-host = mirrors.aliyun.com pypi.ngc.nvidia.com

2.2 配置 Docker 环境

建议 不要 使用默认命令配置 docker 镜像,即 docker build -t openfold .,原因是下载速度较慢,而且有部分冲突,可以参考 Dockerfile 。

手动配置如下,配置 OpenFold 系统环境,即:

# 添加 apt 源
apt-key del 7fa2af80
apt-key del 3bf863cc
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub

# 安装源
apt-get update && apt-get install -y wget libxml2 cuda-minimal-build-11-3 libcusparse-dev-11-3 libcublas-dev-11-3 libcusolver-dev-11-3 git

注意:如果网速很慢,wget 需要耐心等待,建议重试几次。

配置 OpenFold 的 conda 环境 openfold,即:

# 复制环境文件
cd openfold

# 安装环境文件
conda env update -n openfold --file environment.yml && conda clean --all

如果中断,也可以重新更新,即:

# 更新安装环境文件
conda activate openfold
conda env update --file /opt/openfold/environment.yml --prune

注意:需要时间较长,请耐心等待,当安装 pip 包出现异常时,建议手动安装。

遇到安装失败,建议手动安装,日志清晰,推荐 安装方式,即:

# 创建环境
conda create -n openfold python=3.9

# 安装 conda 包
conda install -y -c conda-forge python=3.9 setuptools=59.5.0 pip openmm=7.5.1 pdbfixer cudatoolkit==11.3.*
conda install -y -c bioconda hmmer==3.3.2 hhsuite==3.3.0 kalign2==2.04
conda install -y -c pytorch pytorch=1.12.*

# 安装 pip 包
pip install 'dllogger @ git+https://github.com/NVIDIA/dllogger.git'
pip install biopython==1.79 deepspeed==0.5.10 dm-tree==0.1.6 ml-collections==0.1.0 numpy==1.21.2 PyYAML==5.4.1 requests==2.26.0 scipy==1.7.1 tqdm==4.62.2 typing-extensions==3.10.0.2 pytorch_lightning==1.5.10 wandb==0.12.21 modelcif==0.7

# 解决 bug
conda install -c anaconda numpy-base==1.22.3  # 解决 np.object bug,同时避免与 scipy 冲突。

注意: openmm 的 7.5.1 版本,位于 simtk 中,即 from simtk.openmm import app,在 sites-package 中,没有独立的文件夹。

2.3 修复文件与编译工程

下载资源 stereo_chemical_props.txt 与修复文件 simtk.openmm,即:

cd openfold 
# 注意位于 openfold/openfold/resources 中
wget -q -P openfold/resources https://git.scicore.unibas.ch/schwede/openstructure/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt

# 注意 simtk.openmm 的安装位置需要选择
# conda show openmm
# import simtk
# print(simtk.__file__)
# /opt/conda/envs/openfold/lib/python3.9/site-packages/
patch -p0 -d /opt/conda/envs/openfold/lib/python3.9/site-packages/ < lib/openmm.patch

# 输出日志
patching file simtk/openmm/app/topology.py
Hunk #1 succeeded at 353 (offset -3 lines).

注意:openmm 的 7.5.1 版本需要修复一些 bug,高版本不需要,参考 关于 AlphaFold2 的 openmm.patch 补丁

编译工程,即 conda 环境中包括 openfold 的包,即

cd openfold
python3 setup.py install

2.4 相关文件

配置 conda 环境需要参考 environment.yml 文件,即:

name: openfold_venv
channels:
  - conda-forge
  - bioconda
  - pytorch
dependencies:
  - conda-forge::python=3.9
  - conda-forge::setuptools=59.5.0
  - conda-forge::pip
  - conda-forge::openmm=7.5.1
  - conda-forge::pdbfixer
  - conda-forge::cudatoolkit==11.3.*
  - bioconda::hmmer==3.3.2
  - bioconda::hhsuite==3.3.0
  - bioconda::kalign2==2.04
  - pytorch::pytorch=1.12.*
  - pip:
      - biopython==1.79
      - deepspeed==0.5.10
      - dm-tree==0.1.6
      - ml-collections==0.1.0
      - numpy==1.21.2
      - PyYAML==5.4.1
      - requests==2.26.0
      - scipy==1.7.1
      - tqdm==4.62.2
      - typing-extensions==3.10.0.2
      - pytorch_lightning==1.5.10
      - wandb==0.12.21
      - modelcif==0.7
      - git+https://github.com/NVIDIA/dllogger.git

配置环境需要参考 Dockerfile 文件,即:

FROM nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu18.04

# metainformation
LABEL org.opencontainers.image.version = "1.0.0"
LABEL org.opencontainers.image.authors = "Gustaf Ahdritz"
LABEL org.opencontainers.image.source = "https://github.com/aqlaboratory/openfold"
LABEL org.opencontainers.image.licenses = "Apache License 2.0"
LABEL org.opencontainers.image.base.name="docker.io/nvidia/cuda:10.2-cudnn8-runtime-ubuntu18.04"

RUN apt-key del 7fa2af80
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub

RUN apt-get update && apt-get install -y wget libxml2 cuda-minimal-build-11-3 libcusparse-dev-11-3 libcublas-dev-11-3 libcusolver-dev-11-3 git
RUN wget -P /tmp \
    "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" \
    && bash /tmp/Miniconda3-latest-Linux-x86_64.sh -b -p /opt/conda \
    && rm /tmp/Miniconda3-latest-Linux-x86_64.sh
ENV PATH /opt/conda/bin:$PATH

COPY environment.yml /opt/openfold/environment.yml

# installing into the base environment since the docker container wont do anything other than run openfold
RUN conda env update -n base --file /opt/openfold/environment.yml && conda clean --all

COPY openfold /opt/openfold/openfold
COPY scripts /opt/openfold/scripts
COPY run_pretrained_openfold.py /opt/openfold/run_pretrained_openfold.py
COPY train_openfold.py /opt/openfold/train_openfold.py
COPY setup.py /opt/openfold/setup.py
COPY lib/openmm.patch /opt/openfold/lib/openmm.patch
RUN wget -q -P /opt/openfold/openfold/resources \
    https://git.scicore.unibas.ch/schwede/openstructure/-/raw/7102c63615b64735c4941278d92b554ec94415f8/modules/mol/alg/src/stereo_chemical_props.txt
RUN patch -p0 -d /opt/conda/lib/python3.9/site-packages/ < /opt/openfold/lib/openmm.patch
WORKDIR /opt/openfold
RUN python3 setup.py install

2.5 提交 Docker Image

登录 docker 服务器,即:

docker login harbor.[ip address].com

注意:如果无法登录,则需要管理员配置,或切换可登录的服务器。

设置 BOS 命令:

alias bos='bcecmd/bcecmd --conf-path bcecmd/bceconf/ bos'

提交 docker image,设置标签 (tag),以及上传 docker,即:

# 提交 Tag
docker ps -l
docker commit [container id] openfold:v1.0

# 准备远程 Tag
docker tag openfold:v1.0 openfold:v1.0
docker images | grep "openfold"

# 推送至远程
docker push openfold:v1.0
# 从远程拉取
docker pull openfold:v1.0

# 或者保存至本地
docker save openfold:v1.0 | gzip > openfold_v1_0.tar.gz
# 加载已保存的 docker image
docker image load -i openfold_v1_01.tar.gz
docker images | grep "openfold"

进入 Harbor 页面查看,发现已上传的 docker image,以及不同版本,即:

Img


3. Bugfix

3.1 Numpy 版本不兼容

Bug 日志:

openfold/openfold/data/templates.py:88: FutureWarning: In the future `np.object` will be defined as the corresponding NumPy scalar.
  "template_domain_names": np.object,
Traceback (most recent call last):
  File "openfold/run_pretrained_openfold.py", line 47, in <module>
    from openfold.data import templates, feature_pipeline, data_pipeline
  File "openfold/openfold/data/templates.py", line 88, in <module>
    "template_domain_names": np.object,
  File "/opt/conda/envs/openfold/lib/python3.9/site-packages/numpy/__init__.py", line 319, in __getattr__
    raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'object'.
`np.object` was a deprecated alias for the builtin `object`. To avoid this error in existing code, use `object` by itself. Doing this will not modify any behavior and is safe. 
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
    https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

即 Numpy 版本过高,没有 np.object 属性,建议降低至 1.23.4 版本,即:

conda list numpy

# 当前 numpy-base 的版本是 1.25.2
# conda list numpy
# packages in environment at /opt/conda/envs/openfold:
#
# Name                    Version                   Build  Channel
numpy                     1.21.2                   pypi_0    pypi
numpy-base                1.25.2           py39hb5e798b_0    defaults

# 降低版本至 1.23.4
conda install -c anaconda numpy-base==1.22.3  # 解决 np.object bug,同时避免与 scipy 冲突。

也可以,修改源码文件 openfold/data/templates.pyopenfold/data/data_pipeline.py,将 np.object 替换为 object,注意,全局搜索,需要修改 2 处,即:

TEMPLATE_FEATURES = {
    "template_aatype": np.int64,
    "template_all_atom_mask": np.float32,
    "template_all_atom_positions": np.float32,
    "template_domain_names": np.object,  # 需要修改
    "template_sequence": np.object,  # 需要修改
    "template_sum_probs": np.float32,
}

Bug 参考:

  • StackOverflow - module ‘numpy’ has no attribute ‘object’ closed
  • 关于 scipy 与 numpy 的兼容性,参考: Toolchain Roadmap

参考

参考:

  • ENV 设置环境变量
  • StackOverflow - How to update an existing Conda environment with a .yml file
  • CSDN - 配置 AlphaFold2 的高效 Tensorflow 运行环境
  • CSDN - 蛋白质结构预测 ESMFold 算法的工程配置

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/892094.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

循环队列的实现(c语言)

前言 循环队列是队列的一种特殊的结构&#xff0c;在生产者——消费者模型中常常使用它&#xff0c; 它在逻辑上是一个环形的连续的结构。在物理可以使用数组来实现。 目录 1.循环队列的逻辑结构 2.空的循环队列和满的循环队列 3.循环队列插入和删除 4.代码实现 …

关于小程序收集用户手机号行为的规范

手机号在日常生活中被广泛使用&#xff0c;是重要的用户个人信息&#xff0c;小程序开发者应在用户明确同意的前提下&#xff0c;依法合规地处理用户的手机号信息。 而部分开发者在处理用户手机号过程中&#xff0c;存在不规范收集行为&#xff0c;影响了用户的正常使用体验&a…

如何使用ChatGPT创建个性化的健身锻炼计划

ChatGPT广泛应用于各个行业&#xff0c;健身也不例外。 ChatGPT 在健身领域的一个常用案例是创建个性化的锻炼计划。 在要求 ChatGPT 创建锻炼计划时&#xff0c;简单地输入自己的目标和当前的健身水平是一个很好的开始。完成此操作后&#xff0c;你还可以使用其他提示和措施来…

视频汇聚集中存储EasyCVR平台调用iframe地址视频无法播放,该如何解决?

安防监控视频汇聚平台EasyCVR基于云边端一体化架构&#xff0c;具有强大的数据接入、处理及分发能力&#xff0c;可提供视频监控直播、云端录像、视频云存储、视频集中存储、视频存储磁盘阵列、录像检索与回看、智能告警、平台级联、云台控制、语音对讲、AI算法中台智能分析无缝…

Git 删除 GitHub仓库的文件

新建文件夹 git bash here 在新建的文件夹里右键git bash here打开终端&#xff0c;并执行git init初始化仓库 git clone <你的地址> 找到github上要删除的仓库地址&#xff0c;并复制&#xff0c;在终端里输入git clone <你的地址> 要删除文件的库里右键git b…

使用 Apache Kafka 和 Go 将数据引入 OpenSearch

需要编写自定义集成层来满足数据管道中的特定要求&#xff1f;了解如何使用 Go 通过 Kafka 和 OpenSearch 实现此目的。 可扩展的数据摄取是OpenSearch等大规模分布式搜索和分析引擎的一个关键方面。构建实时数据摄取管道的方法之一是使用Apache Kafka。它是一个开源事件流平台…

Ceph如何操作底层对象数据

1.基本原理介绍 1.1 ceph中的对象(object) 在Ceph存储中&#xff0c;一切数据最终都会以对象(Object)的形式存储在硬盘&#xff08;OSD&#xff09;上&#xff0c;每个的Object默认大小为4M。 通过rados命令&#xff0c;可以查看一个存储池中的所有object信息&#xff0c;例如…

配资平台app(正规股票配资软件)架构是怎么搭建的?

随着股票市场的发展&#xff0c;越来越多的投资者开始尝试使用股票配资平台进行杠杆炒股&#xff0c;因此&#xff0c;搭建一套稳定、可靠的配资平台app架构显得尤为重要。本文将介绍配资平台app架构设计的关键要素&#xff0c;以及建立一个正规的配资平台app所需考虑的问题。 …

独立站站群模式是什么意思?站群模式的定义?自建站站群策略含义是什么?

什么是独立站站群模式&#xff1f; 在当今数字化时代&#xff0c;互联网已经成为了人们生活中不可或缺的一部分。随着互联网的发展&#xff0c;独立站站群模式逐渐引起了人们的关注。那么&#xff0c;究竟什么是独立站站群模式呢&#xff1f;让我们一起深入了解一下。 独立站…

85-基于stm32单片机厨房MQ4天然气泄露浓度DHT11温湿度监测报警系统Proteus仿真+源码...

资料编号&#xff1a;085 一&#xff1a;功能介绍&#xff1a; 1、采用stm32单片机OLED显示屏MQ4可燃气体浓度检测DHT11温湿度电机按键蜂鸣器&#xff0c;制作一个温湿度采集、MQ4可燃气体浓度采集&#xff0c;OLED显示相关数据&#xff0c; 2、通过按键设置温度上限、可燃气体…

高性能本地缓存Ristretto(四)—— NumCounters 与 MaxCost参数的设置

ristretto 参数 我在使用ristretto时&#xff0c;对于参数的设置有些疑问。主要是 NumCounters &#xff0c;MaxCost 分别表示什么含义&#xff0c;以及如何确定其数值的问题。 在此记录并分享一下&#xff0c;欢迎各位批评指正&#xff0c;谢谢 官方的指导 先看一下官方的…

模糊测试面面观 | 模糊测试工具知多少

自1988年威斯康星大学的Barton Miller首次提出模糊测试这一概念以来&#xff0c;模糊测试领域经历了持续长久发展。模糊测试作为一种软件测试方法&#xff0c;旨在通过向程序输入模糊、随机、异常的数据&#xff0c;探测和发现潜在的漏洞和错误。这种方法备受安全研究人员的青睐…

“SRP模型+”多技术融合在生态环境脆弱性评价模型构建、时空格局演变分析与RSEI 指数的生态质量评价

近年来&#xff0c;国内外学者在生态系统的敏感性、适应能力和潜在影响等方面开展了大量的生态脆弱性研究&#xff0c;他们普遍将生态脆弱性概念与农牧交错带、喀斯特地区、黄土高原区、流域、城市等相结合&#xff0c;评价不同类型研究区的生态脆弱特征&#xff0c;其研究内容…

win下qwidget全屏弹窗后其他窗口鼠标样式无法更新的问题

在win平台下&#xff0c;实现截取选桌面执行推理功能&#xff0c;用一个qwidget(j对象名为m_selectWidget)来显示选取范围的边框&#xff0c;但这个qwidget显示后&#xff0c;其他窗口在他下面可以接受鼠标相应的事件&#xff0c;但原来的鼠标形状功能失效&#xff08;mac正常&…

构建去中心化微服务集群,满足高可用性和高并发需求的实践指南!

随着互联网技术的不断发展&#xff0c;微服务架构已经成为了开发和部署应用程序的一种主流方式。然而&#xff0c;当应用程序需要满足高可用性和高并发需求时&#xff0c;单一中心化的微服务架构可能无法满足性能和可靠性的要求。因此&#xff0c;构建一个去中心化的微服务集群…

Fine tune简介

目录 Intro Related work Example .1 重新训练 .2 使用新的数据集进行fine tune .3 修改net结构 References 移学习不是一种算法而是一种机器学习思想,应用到深度学习就是微调(Fine-tune)。通过修改预训练网络模型结构(如修改样本类别输出个数),选择性载入预训练网络…

BOXTRADE-天启量化分析平台 主要功能介绍

BOXTRADE-天启量化分析平台 主要功能介绍 potato 数学 web 缘起 月晕而风&#xff0c;础润而雨 BOXTRADE-天启量化 欢迎来到天启量化&#xff01;这是一个专注于量化分析的网站。我们致力于为用户提供市场行情技术指标和量化策略分析方面的优质内容和资源。 我们的使命是 做…

马斯克为何说大模型中R语言会替代Python

为什么不是Python&#xff1f; 当今的LLM应用程序&#xff0c;包括推理应用程序和代理&#xff0c;大多是用 Python 编写的。但这种情况即将改变。对于新一波的开发人员来说&#xff0c;Python 实在是太慢、太臃肿&#xff0c;而且要命的是太笨拙了。事实上&#xff0c; LLVM、…

安防视频汇聚平台EasyCVR视频监控综合管理平台H.265转码功能更新,新增分辨率配置的具体步骤

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…

sql server安装报错 合成活动模板库(ATL) 失败

错误 “合成活动模板库(ATL) 规则失败“ 解决办法&#xff1a; 进入SQL Server 2008R2安装包目录找到文件&#xff1a;sqlsupport_msi&#xff0c;安装此文件之后&#xff0c;再安装SQL Server&#xff0c;便可解决该问题。C:\SQL Server 2008R2\new\SQL Server 2008R2\2052_CH…