C语言如何实现DES加密与解密

news2024/9/26 1:20:05

C语言实现DES加密解密

#include "des.h"
//移位表
static Table_size const shiftTable[NumberOfKeys] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
//E扩展表
static Table_size const eTable[des_key_pc2_standard]={
	32,  1,  2,  3,  4,  5, 
     4,  5,  6,  7,  8,  9,
	 8,  9, 10, 11, 12, 13,
    12, 13, 14, 15, 16, 17,
	16, 17, 18, 19, 20, 21,
    20, 21, 22, 23, 24, 25,
	24, 25, 26, 27, 28, 29,
    28, 29, 30, 31, 32,  1
};
//P置换表
static Table_size const pTable[des_data_rl]={
	16, 7,20,21,29,12,28,17, 
    1,15,23,26, 5,18,31,10,
	2, 8,24,14,32,27, 3, 9,
    19,13,30, 6,22,11, 4,25
};
//数据初始置换表
static Table_size const ip0Table[des_standard] = {
    58, 50, 42, 34, 26, 18, 10, 2,
    60, 52, 44, 36, 28, 20, 12, 4,
    62, 54, 46, 38, 30, 22, 14, 6,
    64, 56, 48, 40, 32, 24, 16, 8,
    57, 49, 41, 33, 25, 17,  9, 1,
    59, 51, 43, 35, 27, 19, 11, 3,
    61, 53, 45, 37, 29, 21, 13, 5,
    63, 55, 47, 39, 31, 23, 15, 7
};
//ip1表
static Table_size const ip1Table[des_standard]={              
	40, 8,48,16,56,24,64,32,
    39, 7,47,15,55,23,63,31,
	38, 6,46,14,54,22,62,30,
    37, 5,45,13,53,21,61,29,
	36, 4,44,12,52,20,60,28,
    35, 3,43,11,51,19,59,27,
	34, 2,42,10,50,18,58,26,
    33, 1,41, 9,49,17,57,25 
};
//子密钥pc1置换表
static Table_size const desSubkeyPc1[des_key_pc1_standard] = {
    57, 49, 41, 33, 25, 17,  9,
     1, 58, 50, 42, 34, 26, 18,
    10,  2, 59, 51, 43, 35, 27,
    19, 11,  3, 60, 52, 44, 36,
    63, 55, 47, 39, 31, 23, 15,
     7, 62, 54, 46, 38, 30, 22,
    14,  6, 61, 53, 45, 37, 29,
    21, 13,  5, 28, 20, 12,  4
};
//子密钥pc2置换表
static Table_size const desSubkeyPc2[des_key_pc2_standard]={
	14, 17, 11, 24,  1,  5,  3, 28,
    15,  6, 21, 10, 23, 19, 12,  4,
    26,  8, 16,  7, 27, 20, 13,  2,
	41, 52, 31, 37, 47, 55, 30, 40,
    51, 34, 33, 48, 44, 49, 39, 56,
    34, 53, 46, 42, 50, 36, 29, 32 
};
//S盒表
static Table_size const sBoxTable[8][4][16]={
 //S1
	14,  4, 13, 1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9, 0,  7,
	 0, 15,  7, 4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5, 3,  8,
	 4,  1, 14, 8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10, 5,  0,
	15, 12,  8, 2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0, 6, 13,
 //S2
	15, 1,  8, 14,  6, 11,  3,  4,  9, 7,  2, 13, 12, 0,  5, 10,
	3, 13,  4,  7, 15,  2,  8, 14, 12, 0,  1, 10,  6, 9, 11,  5,
	0, 14,  7, 11, 10,  4, 13,  1,  5, 8, 12,  6,  9, 3,  2, 15,
	13, 8, 10,  1,  3, 15,  4,  2, 11, 6,  7, 12,  0, 5, 14,  9,
 //S3
	10,  0,  9, 14, 6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
	13,  7,  0,  9, 3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
	13,  6,  4,  9, 8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
	 1, 10, 13,  0, 6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
 //S4
	 7, 13, 14, 3,  0,  6,  9, 10,  1, 2, 8,  5, 11, 12,  4, 15,
	13,  8, 11, 5,  6, 15,  0,  3,  4, 7, 2, 12,  1, 10, 14,  9,
	10,  6,  9, 0, 12, 11,  7, 13, 15, 1, 3, 14,  5,  2,  8,  4,
	 3, 15,  0, 6, 10,  1, 13,  8,  9, 4, 5, 11, 12,  7,  2, 14,
 //S5
	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13, 0, 14,  9,
	14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3, 9,  8,  6,
	 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6, 3,  0, 14,
	11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10, 4,  5,  3,
 //S6
	12,  1, 10, 15, 9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
	10, 15,  4,  2, 7, 12,  0,  5,  6,  1, 13, 14,  0, 11,  3,  8,
	 9, 14, 15,  5, 2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
	 4,  3,  2, 12, 9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
 //S7
	 4, 11,  2, 14, 15, 0,  8, 13,  3, 12, 9,  7,  5, 10, 6,  1,
	13,  0, 11,  7,  4, 0,  1, 10, 14,  3, 5, 12,  2, 15, 8,  6,
	 1,  4, 11, 13, 12, 3,  7, 14, 10, 15, 6,  8,  0,  5, 9,  2,
	 6, 11, 13,  8,  1, 4, 10,  7,  9,  5, 0, 15, 14,  2, 3, 12,
 //S8
	13,  2,  8, 4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
	 1, 15, 13, 8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
	 7, 11,  4, 1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
	 2,  1, 14, 7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
};
/*
 *  函数功能:生成16个6字节子密钥
 *  参数:<key>传入8字节密钥,<key_lenght>密钥长度必须是8字节
 *  返回值:返回16*(48/8)字节大小的16个子密钥
 *  注释:返回值要释放
 */
subkey_size __desSubKeyGeneration(subkey_size key, data_lenght_size key_lenght)
{
    //如果传入空或长度不为8字节则返回空
    if(key==NULL || key_lenght!=8)
        return NULL;
    //申请堆内存
    subkey_size subkey16 = (subkey_size)malloc(NumberOfKeys * (des_key_pc2_standard / systemBit));
    //清空初始化,按照申请内存大小来清空这块堆内存
    memset(subkey16, 0, NumberOfKeys * (des_key_pc2_standard / systemBit));
    //创建布尔型的数组,让移位代码实现更简单
    int count = 0;
    bool tmp = 0;
    bool bit_table_pc1[des_key_pc1_standard]={0};   //pc1的56位数据
    bool bit_table[des_standard]={0};   //64位数据
    //将数据赋值到布尔型数组里面
    for(int i=0; i<des_standard; i++)
        bit_table[i] = BIT_JUDGE(*(key + i / systemBit), (i % systemBit));
    //进行PC1转换
    for(int i=0; i<des_key_pc1_standard; i++)
        bit_table_pc1[i] = bit_table[desSubkeyPc1[i]-1];
    //进行十六次密钥生成
    for(int num=0; num<NumberOfKeys; num++)
    {
        //保存移位次数
        count = shiftTable[num];
        //进行移位
        while(count--)
        {
            //前二十八位移位
            tmp = bit_table_pc1[0];
            for(int i=0; i<28; i++)
                bit_table_pc1[i]=bit_table_pc1[i+1];
            bit_table_pc1[27]=tmp;
            //后二十八位移位
            tmp = bit_table_pc1[28];
            for(int i=28; i<56; i++)
                bit_table_pc1[i]=bit_table_pc1[i+1];
            bit_table_pc1[55]=tmp;
        }
        //进行判断写入新的数据
        for(int i=0; i<des_key_pc2_standard; i++)
        {
            if(bit_table_pc1[desSubkeyPc2[i]-1])
                SET_BIT_NUMBER(*(subkey16 + (num * (des_key_pc2_standard / systemBit)) + (i / systemBit)), (i % systemBit));
            else RESET_BIT_NUMBER(*(subkey16 + (num * (des_key_pc2_standard / systemBit)) + (i / systemBit)), (i % systemBit));
        }
    }
    //返回子密钥
    return subkey16;
}
/*
 *  函数功能:进行数据加密
 *  参数:<data>传入8整数倍字节数据,<data_lenght>数据长度,<key>16*(48/8)字节大小的16个子密钥,<key_lenght>必须是6*16长度
 *  返回值:返回加密后的数据
 *  注释:返回值要释放
 */
data_size __desDataEncryption(data_size data, data_lenght_size data_lenght, subkey_size key, data_lenght_size key_lenght)
{
    //如果传入空或长度不为8字节则返回空
    if(key==NULL || key_lenght!=(NumberOfKeys*(des_key_pc2_standard/systemBit)) || data==NULL || data_lenght!=8)
        return NULL;
    //申请堆内存
    data_size Data16 = (data_size)malloc(des_standard/8);
    //清空初始化,按照申请内存大小来清空这块堆内存
    memset(Data16, 0, (des_standard/8));
    //创建一个布尔型的数组,将移位操作变得简单
    bool bit_table[des_standard]={0};   //64位数据
    bool data64_table[des_standard]={0};    //64位数据
    bool extend48_table[des_key_pc2_standard]={0};  //pc2表的48位数据
    bool dataL32_table[des_data_rl]={0};    //64位数据的左32
    bool dataR32_table[des_data_rl]={0};    //64位数据的右32
    bool tmpL32_table[des_data_rl]={0}; //临时64位数据的左32
    bool tmpR32_table[des_data_rl]={0}; //临时64位数据的右32
    //将数据赋值到布尔型数组里面
    for(int i=0; i<des_standard; i++)
        bit_table[i] = BIT_JUDGE(*(data + (i / systemBit)), (i % systemBit));
    //进行初始置换
    for(int i=0; i<des_standard; i++)
        data64_table[i] = bit_table[ip0Table[i]-1];
    //将64位一分为二
    for(int i=0; i<des_data_rl; i++)
        dataL32_table[i] = data64_table[i];
    for(int i=0; i<des_data_rl; i++)
        dataR32_table[i] = data64_table[i+32];
    //   列    行
    int row=0, col=0;
    //进行十六次轮函数
    for(int num=0; num<NumberOfKeys; num++)
    {
        //将R数组赋值给L的临时数组
        for(int i=0; i<des_data_rl; i++) 
            tmpL32_table[i] = dataR32_table[i];
        //将R数组进行E扩展
        for(int i=0; i<des_key_pc2_standard; i++)
            extend48_table[i] = dataR32_table[(eTable[i]-1)];
        //将E扩展后48位和子密钥进行异或
        for(int i=0; i<des_key_pc2_standard; i++) 
            extend48_table[i] = extend48_table[i] ^ (BIT_JUDGE(*(key + (num * (des_key_pc2_standard / systemBit)) + i / systemBit), (i % systemBit)));  
        //将48位转换成32位
        for(int j=0; j<des_key_pc2_standard; j+=6) 
        {
            //计算出行列
            row = extend48_table[j+0]*2 + extend48_table[j+5]*1;
            col = extend48_table[j+1]*8 + extend48_table[j+2]*4 + extend48_table[j+3]*2 + extend48_table[j+4]*1;
            //进行查表,并将10进制转换为四位二进制
            for(int i=0; i<4; i++) 
                dataR32_table[((j/6)*4)+i] = BIT_JUDGE(sBoxTable[j/6][row][col], i);
        }
        //将R进行转换并存入R临时数组
        for(int i=0; i<des_data_rl; i++) 
            tmpR32_table[i] = dataR32_table[pTable[i]-1];
        //在用临时数组进行异或
        for(int i=0; i<des_data_rl; i++)
        {
            dataR32_table[i] = (dataL32_table[i] ^ tmpR32_table[i]);
        }
        //最后将刚才的L临时数组赋值
        for(int i=0; i<des_data_rl; i++)
            dataL32_table[i] = tmpL32_table[i];
    }
    //将两个32位进行拼接
    for(int i=0; i<des_data_rl; i++)
        data64_table[i] = dataL32_table[i];
    for(int i=des_data_rl; i<des_standard; i++)
        data64_table[i] = dataR32_table[i-32];
    //进行判断写入新的数据
    for(int i=0; i<des_standard; i++)
    {
        if(data64_table[ip1Table[i]-1])
            SET_BIT_NUMBER(*(Data16 + (i / systemBit)), (i % systemBit));
        else RESET_BIT_NUMBER(*(Data16 + (i / systemBit)), (i % systemBit));
    }
    //返回数据
    return Data16;
}
/*
 *  函数功能:进行数据解密
 *  参数:<data>传入加密后数据,<data_lenght>加密后数据长度,<key>16*(48/8)字节大小的16个子密钥,<key_lenght>必须是6*16长度
 *  返回值:返回解密后的数据
 *  注释:返回值要释放
 */
data_size __desDataDecrypt(data_size data, data_lenght_size data_lenght, subkey_size key, data_lenght_size key_lenght)
{
    //如果传入空或长度不为8字节则返回空
    if(key==NULL || key_lenght!=(NumberOfKeys*(des_key_pc2_standard/systemBit)) || data==NULL || data_lenght!=8)
        return NULL;
    //申请堆内存
    data_size Data16 = (data_size)malloc(des_standard/8);
    //清空初始化,按照申请内存大小来清空这块堆内存
    memset(Data16, 0, (des_standard/8));
    //创建一堆布尔型的数组,将移位操作变得简单
    bool bit_table[des_standard]={0};   //64位数据
    bool data64_table[des_standard]={0};    //64位数据
    bool extend48_table[des_key_pc2_standard]={0};  //pc2表48位数据
    bool dataL32_table[des_data_rl]={0};    //64位数据的左32位
    bool dataR32_table[des_data_rl]={0};    //64位数据的右32位
    bool tmpL32_table[des_data_rl]={0}; //临时64位数据的左32位
    bool tmpR32_table[des_data_rl]={0}; //临时64位数据的右32位
    //将数据赋值到布尔型数组里面
    for(int i=0; i<des_standard; i++)
        bit_table[i] = BIT_JUDGE(*(data + (i / systemBit)), (i % systemBit));
    //进行初始置换
    for(int i=0; i<des_standard; i++)
        data64_table[i] = bit_table[ip0Table[i]-1];
    //将64位一分为二
    for(int i=0; i<des_data_rl; i++)
        dataR32_table[i] = data64_table[i];
    for(int i=0; i<des_data_rl; i++)
        dataL32_table[i] = data64_table[i+32];
    //   列    行
    int row=0, col=0;
    //进行十六次轮函数(反着来)
    for(int num=(NumberOfKeys-1); num>=0; num--)
    {
        //将R数组赋值给L的临时数组
        for(int i=0; i<des_data_rl; i++) 
            tmpL32_table[i] = dataR32_table[i];
        //将R数组进行E扩展
        for(int i=0; i<des_key_pc2_standard; i++)
            extend48_table[i] = dataR32_table[(eTable[i]-1)];
        //将E扩展后48位和子密钥进行异或
        for(int i=0; i<des_key_pc2_standard; i++) 
            extend48_table[i] = extend48_table[i] ^ (BIT_JUDGE(*(key + (num * (des_key_pc2_standard / systemBit)) + i / systemBit), (i % systemBit)));  
        //将48位转换成32位
        for(int j=0; j<des_key_pc2_standard; j+=6) 
        {
            //计算出行列
            row = extend48_table[j+0]*2 + extend48_table[j+5]*1;
            col = extend48_table[j+1]*8 + extend48_table[j+2]*4 + extend48_table[j+3]*2 + extend48_table[j+4]*1;
            //进行查表,并将10进制转换为四位二进制
            for(int i=0; i<4; i++) 
                dataR32_table[((j/6)*4)+i] = BIT_JUDGE(sBoxTable[j/6][row][col], i);
        }
        //将R进行转换并存入R临时数组
        for(int i=0; i<des_data_rl; i++) 
            tmpR32_table[i] = dataR32_table[pTable[i]-1];
        //在用临时数组进行异或
        for(int i=0; i<des_data_rl; i++) 
        {
            dataR32_table[i] = (dataL32_table[i] ^ tmpR32_table[i]);
        }
        //最后将刚才的L临时数组赋值
        for(int i=0; i<des_data_rl; i++) 
            dataL32_table[i] = tmpL32_table[i];
    }
    //将两个32位进行拼接
    for(int i=0; i<des_data_rl; i++)
        data64_table[i] = dataR32_table[i];
    for(int i=des_data_rl; i<des_standard; i++)
        data64_table[i] = dataL32_table[i-32];
    //进行判断写入新的数据
    for(int i=0; i<des_standard; i++)
    {
        if(data64_table[ip1Table[i]-1])
            SET_BIT_NUMBER(*(Data16 + (i / systemBit)), (i % systemBit));
        else RESET_BIT_NUMBER(*(Data16 + (i / systemBit)), (i % systemBit));
    }
    //返回数据
    return Data16;
}
/*
 *  函数功能:将数据进行DES加密
 *  参数:<data>要加密的数据,<data_lenght>要加密的数据长度,<key>进行加密的密钥,<key_lenght>密钥的长度(8字节),<fillingMode>数据补位的模式选择
 *  返回值:返回一个结构体,结构体内有加密后数据和加密后数据长度
 */
p_desRetStruct desEncryption(data_size data, data_lenght_size data_lenght, subkey_size key, data_lenght_size key_lenght, enumFillingMode fillingMode)
{
    if(key_lenght != 8 || (fillingMode != NOPADDING && fillingMode != PKCS5PADDING))
    {
        return NULL;
    }
    //申请堆内存
    p_desRetStruct retData = (p_desRetStruct)malloc(sizeof(desRetStruct));
    //清空这块内存
    memset(retData, 0, sizeof(desRetStruct));
    //计算出长度
    data_lenght_size mallocLenght = ((data_lenght%8==0)?(data_lenght):(((data_lenght/8)*8)+8));
    //申请堆内存
    retData->data = (data_size)malloc(mallocLenght);
    //长度进行赋值
    retData->dataLenght = mallocLenght;
    //清空这块内存
    memset(retData->data, 0, mallocLenght);
    //进行赋值
    memcpy(retData->data, data, data_lenght);
    //如果是长度是8的整数倍
    if(fillingMode == PKCS5PADDING && data_lenght % 8 != 0)
    {
        for(int i=0;i<8-(data_lenght%8);i++)
        {
            unsigned char num = (8 - (data_lenght % 8));
            //进行拷贝
            memcpy(retData->data + data_lenght + i, &num, 1);
        }
    }
    //获取16个子密钥
    subkey_size subkey16 = __desSubKeyGeneration(key, key_lenght);
    //进行循环每8字节进行加密
    for(int i=0; i<mallocLenght; i+=8)
    {
        //将8字节进行加密
        data_size mData = __desDataEncryption(retData->data + i, 8, subkey16, 96);
        //将加密后字节拷贝到返回值上
        memcpy(retData->data + i, mData, 8);
        //释放
        free(mData);
    }
    //释放16个子密钥
    free(subkey16);
    //返回加密后的数据
    return retData;
}
/*
 *  函数功能:将DES加密数据进行解密
 *  参数:<data>要解密的数据,<data_lenght>要解密的数据长度(8的整数倍字节),<key>进行解密的密钥,<key_lenght>密钥的长度(8字节),<fillingMode>数据补位的模式选择
 *  返回值:返回一个结构体,结构体内有解密后数据和解密后数据长度
 */
p_desRetStruct desDecrypt(data_size data, data_lenght_size data_lenght, data_size key, data_lenght_size key_lenght, enumFillingMode fillingMode)
{
    if(key_lenght != 8 || (fillingMode != NOPADDING && fillingMode != PKCS5PADDING) || data_lenght%8 != 0 || data_lenght == 0)
    {
        return NULL;
    }
    //申请堆内存
    p_desRetStruct retData = (p_desRetStruct)malloc(sizeof(desRetStruct));
    //清空这块内存
    memset(retData, 0, sizeof(desRetStruct));
    //申请堆内存
    retData->data = (data_size)malloc(data_lenght);
    //长度进行赋值
    retData->dataLenght = data_lenght;
    //清空这块内存
    memset(retData->data, 0, data_lenght);
    //获取16个子密钥
    subkey_size subkey16 = __desSubKeyGeneration(key, key_lenght);
    //进行循环每8字节进行解密
    for(int i=0; i<data_lenght; i+=8)
    {
        //将8字节进行解密
        data_size mData = __desDataDecrypt(data + i, 8, subkey16, 96);
        //将解密后字节拷贝到返回值上
        memcpy(retData->data + i, mData, 8);
        //释放
        free(mData);
    }
    //按照8-(n%8)补位方式解密
    if(fillingMode == PKCS5PADDING)
    {
        //如果最后一位是0x01~0x07
        if(0x01 <= *(retData->data + (data_lenght - 1)) && *(retData->data + (data_lenght - 1)) <= 0x07)
        {
            //进行8-模次循环
            for(int count=1; count<=*(retData->data + (data_lenght - 1)); count++)
            {
                //判断是否和最后一字节相等
                if(*(retData->data + (data_lenght - 1)) == *(retData->data + (data_lenght - count)))
                {
                    retData->dataLenght--;
                }
                else
                {
                    //如果有一次不相等就说明该数据没有补位
                    retData->dataLenght = data_lenght;
                    //退出循环
                    break;
                }
            }
        }
    }
    //按照\0补位方式解密
    else if(fillingMode == NOPADDING)
    {
        //从尾部开始进行8次判断
        for(int count=1; count<=8; count++)
        {
            //如果这一字节等于0就位去掉
            if(0x00 == *(retData->data + (data_lenght - count)))
            {
                //将长度进行减1
                retData->dataLenght--;
            }
            else
            {
                //遇到正常数据进行退出循环
                break;
            }
        }
    }
    //释放16个子密钥
    free(subkey16);
    //返回加密后的数据
    return retData;
}
/*
 *  函数功能:将数据进行3DES加密
 *  参数:<data>要加密的数据,<data_lenght>要加密的数据长度,<key>进行加密的密钥,<key_lenght>密钥的长度(24字节),<fillingMode>数据补位的模式选择
 *  返回值:返回一个结构体,结构体内有加密后数据和加密后数据长度
 */
p_desRetStruct _3desEncryption(data_size data, data_lenght_size data_lenght, subkey_size key, data_lenght_size key_lenght, enumFillingMode fillingMode)
{
    if(key_lenght != 24 || (fillingMode != NOPADDING && fillingMode != PKCS5PADDING))
    {
        return NULL;
    }
    //申请堆内存
    p_desRetStruct retData = (p_desRetStruct)malloc(sizeof(desRetStruct));
    //清空这块内存
    memset(retData, 0, sizeof(desRetStruct));
    //计算出长度
    data_lenght_size mallocLenght = ((data_lenght%8==0)?(data_lenght):(((data_lenght/8)*8)+8));
    //申请堆内存
    retData->data = (data_size)malloc(mallocLenght);
    //长度进行赋值
    retData->dataLenght = mallocLenght;
    //清空这块内存
    memset(retData->data, 0, mallocLenght);
    //进行赋值
    memcpy(retData->data, data, data_lenght);
    //如果是长度是8的整数倍
    if(fillingMode == PKCS5PADDING && data_lenght % 8 != 0)
    {
        for(int i=0;i<8-(data_lenght%8);i++)
        {
            unsigned char num = (8 - (data_lenght % 8));
            //进行拷贝
            memcpy(retData->data + data_lenght + i, &num, 1);
        }
    }
    //获取16个子密钥
    subkey_size subkey1 = __desSubKeyGeneration(key, 8);
    //获取16个子密钥
    subkey_size subkey2 = __desSubKeyGeneration(key+(key_lenght/3), 8);
    //获取16个子密钥
    subkey_size subkey3 = __desSubKeyGeneration(key+((key_lenght/3)*2), 8);
    //进行循环每8字节进行加密
    for(int i=0; i<mallocLenght; i+=8)
    {
        //将8字节进行加密
        data_size mData1 = __desDataEncryption(retData->data + i, 8, subkey1, 96);
        data_size mData2 = __desDataDecrypt(mData1, 8, subkey2, 96);
        data_size mData3 = __desDataEncryption(mData2, 8, subkey3, 96);
        //将加密后字节拷贝到返回值上
        memcpy(retData->data + i, mData3, 8);
        //释放
        free(mData1);
        free(mData2);
        free(mData3);
    }
    //释放子密钥
    free(subkey1);
    free(subkey2);
    free(subkey3);
    //返回加密后的数据
    return retData;
}
/*
 *  函数功能:将3DES加密数据进行解密
 *  参数:<data>要解密的数据,<data_lenght>要解密的数据长度(8的整数倍字节),<key>进行解密的密钥,<key_lenght>密钥的长度(24字节),<fillingMode>数据补位的模式选择
 *  返回值:返回一个结构体,结构体内有解密后数据和解密后数据长度
 */
p_desRetStruct _3desDecrypt(data_size data, data_lenght_size data_lenght, data_size key, data_lenght_size key_lenght, enumFillingMode fillingMode)
{
    if(key_lenght != 24 || (fillingMode != NOPADDING && fillingMode != PKCS5PADDING) || data_lenght%8 != 0 || data_lenght == 0)
    {
        return NULL;
    }
    //申请堆内存
    p_desRetStruct retData = (p_desRetStruct)malloc(sizeof(desRetStruct));
    //清空这块内存
    memset(retData, 0, sizeof(desRetStruct));
    //申请堆内存
    retData->data = (data_size)malloc(data_lenght);
    //长度进行赋值
    retData->dataLenght = data_lenght;
    //清空这块内存
    memset(retData->data, 0, data_lenght);
    //获取16个子密钥
    subkey_size subkey1 = __desSubKeyGeneration(key, 8);
    //获取16个子密钥
    subkey_size subkey2 = __desSubKeyGeneration(key+(key_lenght/3), 8);
    //获取16个子密钥
    subkey_size subkey3 = __desSubKeyGeneration(key+((key_lenght/3)*2), 8);
    //进行循环每8字节进行解密
    for(int i=0; i<data_lenght; i+=8)
    {
        //将8字节进行加密
        data_size mData1 = __desDataDecrypt(data + i, 8, subkey3, 96);
        data_size mData2 = __desDataEncryption(mData1, 8, subkey2, 96);
        data_size mData3 = __desDataDecrypt(mData2, 8, subkey1, 96);
        //将解密后字节拷贝到返回值上
        memcpy(retData->data + i, mData3, 8);
        //释放
        free(mData1);
        free(mData2);
        free(mData3);
    }
    //按照8-(n%8)补位方式解密
    if(fillingMode == PKCS5PADDING)
    {
        //如果最后一位是0x01~0x07
        if(0x01 <= *(retData->data + (data_lenght - 1)) && *(retData->data + (data_lenght - 1)) <= 0x07)
        {
            //进行(8-模)次循环
            for(int count=1; count<=*(retData->data + (data_lenght - 1)); count++)
            {
                //判断是否和最后一字节相等
                if(*(retData->data + (data_lenght - 1)) == *(retData->data + (data_lenght - count)))
                {
                    retData->dataLenght--;
                }
                else
                {
                    //如果有一次不相等就说明该数据没有补位
                    retData->dataLenght = data_lenght;
                    //退出循环
                    break;
                }
            }
        }
    }
    //按照\0补位方式解密
    else if(fillingMode == NOPADDING)
    {
        //从尾部开始进行8次判断
        for(int count=1; count<=8; count++)
        {
            //如果这一字节等于0就位去掉
            if(0x00 == *(retData->data + (data_lenght - count)))
            {
                //将长度进行减1
                retData->dataLenght--;
            }
            else
            {
                //遇到正常数据进行退出循环
                break;
            }
        }
    }
    //释放16个子密钥
    free(subkey1);
    free(subkey2);
    free(subkey3);
    //返回加密后的数据
    return retData;
}

C语言DES加密解密的认识以及解密出现乱码的分析

在工作中遇到的Des解密问题,第三方发来的数据需要我们进行des解密,但是解密的结果前几位始终是乱码。废了半天劲,终于找到了问题所在。

下面先介绍一下des,了解des的同学可以直接看下面的解决办法。

Des加密

DES全称为Data EncryptionStandard,即数据加密标准。Des加密算法是一种对称加密算法,所谓对称加密算法就是指对明文的加密以及对密文的解密用的是同一个密钥。

Des使用一个56位的密钥以及附加的8位奇偶校验位,产生最大64位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。

特点:数据加密标准,速度较快,适用于加密大量数据的场合。

Des算法的入口参数有三个:Key、Data、Mode。

  • Key: 为8个字节共64位,Des算法规定,其中第8、16、24、......64位是奇偶校验位,不参与Des运算,所以常说Des的密钥为56位。 在Des加密和解密的过程当中,密钥的长度都必须是8字节的倍数。

  • Data: 8个字节64位,是要被加密后解密的数据。

  • Mode: Des的工作方式:加密、解密。

Des加密模式

Des的加密模式主要有CBC模式,ECB模式,它们分别使用不同的加密方式加密。

ECB模式指的是电子密码本模式,是一种最古老,最简单的模式,将加密的数据分成若干组,每组的大小跟加密密钥长度相同;然后每组都用相同的密钥加密, 如果最后一个分组长度不够64位,要补齐64位。

ECB模式的特点是:

  • 每次Key、明文、密文的长度都必须是64位;

  • 数据块重复排序不需要检测;

  • 相同的明文块(使用相同的密钥)产生相同的密文块,容易遭受字典攻击;

  • 一个错误仅仅会对一个密文块产生影响;

CBC模式指的是加密块链模式,与ECB模式最大的不同是加入了初始向量。

CBC模式的特点是:

  • 每次加密的密文长度为64位(8个字节);

  • 当相同的明文使用相同的密钥和初始向量的时候CBC模式总是产生相同的密文;

  • 密文块要依赖以前的操作结果,所以,密文块不能进行重新排列;

  • 可以使用不同的初始化向量来避免相同的明文产生相同的密文,一定程度上抵抗字典攻击;

  • 一个错误发生以后,当前和以后的密文都会被影响;

填充方式

常见的填充方式PKCS5Padding,PKCS5Padding表示当数据位数不足的时候要采用的数据补齐方式,也可以叫做数据填充方式。PKCS5Padding这种填充方式,具体来说就是“填充的数字代表所填字节的总数”

比如说,差两个字节,就是######22,差5个字节就是###55555,这样根据最后一个自己就可以知道填充的数字和数量。

保证加密解密的一致性 

在不同的平台上,只要能保证这几个参数的一致,就可以实现加密和解密的一致性。

  • 加密和解密的密钥一致

  • 采用CBC模式的时候,要保证初始向量一致

  • 采用相同的填充模式

python中的des加密

在python中,我们使用pyDes对数据进行des加密:

# pyDes.des(key, [mode], [IV], [pad], [padmode])

  • key:des的加密解密密钥。

  • mode: 加密模式:支持CBC,ECB两种模式

  • IV: 初始化向量,这是CBC模式专有的,长度为8 bytes。使用不同的初始化向量加密避免产生相同的密文,一定程度上抵抗字典攻击。

  • pad: 当padmode设置为PAD_NORMAL时,用pad参数来指定填充方式。

  • padmode: 填充方式,默认为PAD_PKCS5填充模式。

Example
-------
from pyDes import *
data = "Please encrypt my data"
k = des("DESCRYPT", CBC, "\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5)
# For Python3, you'll need to use bytes, i.e.:
# data = b"Please encrypt my data"
# k = des(b"DESCRYPT", CBC, b"\0\0\0\0\0\0\0\0", pad=None, padmode=PAD_PKCS5)
d = k.encrypt(data)
print "Encrypted: %r" % d
print "Decrypted: %r" % k.decrypt(d)
assert k.decrypt(d, padmode=PAD_PKCS5) == data
des加密后(CBC模式)使用相同的密钥,初始向量,填充模式解密,解密后的字符前几位是乱码,其他位正常的解决办法
des_key = 'ucgtchdp'
IV = '12345678'
k = des(des_key, mode=CBC, IV='12345678', padmode=PAD_PKCS5)

传递过来的加密数据: xUjw0iO7uhymZ+h/VB9kvhubiAEv4Kzz

通过k解密出来的数据:@IDX_^\x10Ys powerful

这种情况通常发生在不同语言(java加密、python解密)对初始向量的处理方式不同造成的解密不完全。

解决办法:检查初始向量的表现形式。

k1 = des(des_key, mode=CBC, IV='\1\2\3\4\5\6\7\x08', padmode=PAD_PKCS5)

通过k1解密出来的数据:python is powerful

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/889781.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学校提升教学质量,这个方法很炸裂!

当今教育领域日益强调教学质量的提升和教师专业发展。为了实现这一目标&#xff0c;许多学校开始采用在线巡课系统来监控、评估和改进教学过程。 在线巡课系统作为一种创新的教学管理工具&#xff0c;不仅有助于教育管理者更好地了解教师的教学实践&#xff0c;还能够为教师提供…

如何发布自己的小程序

小程序的基础内容组件 text&#xff1a; 文本支持长按选中的效果 <text selectable>151535313511</text> rich-text: 把HTML字符串渲染为对应的UI <rich-text nodes"<h1 stylecolor:red;>123</h1>"></rich-text> 小程序的…

国标GB28181视频平台EasyGBS国标平台针对数据库删除级联数据后的无效数据进行优化的具体操作步骤

EasyGBS国标视频云服务可支持通过国标GB28181协议将设备接入&#xff0c;实现视频的实时监控直播、录像、语音对讲、云存储、告警、级联等功能&#xff0c;同时也支持将接入的视频流进行全终端、全平台分发&#xff0c;分发的视频流包括RTSP、RTMP、FLV、HLS、WebRTC等格式。同…

spring核心技术(下)--面向切面aop的特点加案例论证

目录 一.spring的aop的特点 1.1 aop的简介 1.2 举例 二.spring的aop的专业术语 三.论证模拟 3.1.前置通知 3.2.后置通知 3.3.环绕通知 3.4.异常通知 3.5.过滤通知 今天就分享到这啦&#xff01;&#xff01; 一.spring的aop的特点 Spring就是一个轻量级的控制反转(IOC)和面向…

go es实例

go es实例 1、下载第三方库 go get github.com/olivere/elastic下载过程中出现如下报错&#xff1a; 解决方案&#xff1a; 2、示例 import package mainimport ("context""encoding/json""fmt""reflect""time""…

电脑文件删除了可以找回吗?3种文件恢复办法!

在日常工作中&#xff0c;我们经常会需要处理很多的工作文件&#xff0c;但有时候会不小心误删电脑中的文件。 那么&#xff0c;电脑上面的文件被删除了可以找回吗&#xff1f;答案是肯定的&#xff01;下面就来分享三种比较好用的方法&#xff0c;一起来看下吧。 方法一&…

C++初阶——构造函数的初始化列表

前言&#xff1a;C中&#xff0c;初始化列表是构造函数中极为重要的一部分,是每个成员变量定义的地方。 目录 一.什么是初始化列表二.何时用初始化列表声明处赋值——缺省值 三.注意点 一.什么是初始化列表 初始化列表是每个成员变量定义的地方。不管我们有没有写&#xff0c;成…

带你了解—使用内网穿透,公网远程访问本地硬盘文件

文章目录 前言1. 下载cpolar和Everything软件3. 设定http服务器端口4. 进入cpolar的设置5. 生成公网连到本地内网穿透数据隧道 总结 前言 随着云概念的流行&#xff0c;不少企业采用云存储技术来保存办公文件&#xff0c;同时&#xff0c;很多个人用户也感受到云存储带来的便利…

测试右移,也就是生产环境下的QA

一、一个生产环境 Bug 的解决办法 先来跟大家分享一个生产环境下的 Bug&#xff1a; 一个在线订购葡萄酒的系统&#xff0c;订购流程相对复杂&#xff0c;下单过程中后台会有随机的失败&#xff0c;系统采取的措施是重试&#xff0c;就是说顾客下单后&#xff0c;后台如果有错…

中期国际:MT4数据挖掘与分析方法:以数据为导向,制定有效的交易策略

在金融市场中&#xff0c;制定有效的交易策略是成功交易的关键。而要制定一份可靠的交易策略&#xff0c;数据挖掘与分析方法是不可或缺的工具。本文将介绍如何以数据为导向&#xff0c;利用MT4进行数据挖掘与分析&#xff0c;从而制定有效的交易策略。 首先&#xff0c;我们需…

易服客工作室:Uncode主题 - 创意和WooCommerce WordPress主题

Uncode主题是一款像素完美的创意 WordPress 主题&#xff0c;适用于任何类型的网站&#xff08;作品集、代理机构、自由职业者、博客&#xff09;&#xff0c;也是适用于商店&#xff08;电子商务、在线商店、企业&#xff09;的顶级 WooCommerce 主题。Uncode 的设计非常注重细…

C linux struct sigaction

在linux中定义struct sigaction结构体时, 在已经包含signal.h头文件的情况下, 仍旧提示找不到这个结构体. 需要在代码中定义 _POSIX_C_SOURCE 宏&#xff0c;并将其设为大于等于 199309L 的值。这样可以确保相关的函数和结构体在编译时可用。 这将告诉编译器以符合 POSIX 标准要…

vue项目打包成exe

目标&#xff1a;vue的项目打包成为exe可执行文件 工具&#xff1a;需要使用到Electron框架 首先&#xff0c;我们了解一下什么是Electron&#xff1b; Electron 是由 GitHub 开发而成的。它是使用 JavaScript&#xff0c;HTML 和 CSS 构建跨平台的桌面应用程序的框架&#…

[JavaWeb]【三】Maven

目录 一 什么是Maven 二 Maven的作用 2.1 依赖管理 2.2 统一项目目录 2.3 标准项目构建 三 Maven概述 3.1 介绍 3.2 安装 四 IDEA集成Maven 4.1 配置Maven环境 4.1.1 单个项目配置 4.1.1.1 创建项目 4.1.1.2 配置项目JDK版本 4.1.1.3 配置maven 4.1.2 配置全局Maven环…

2023年我国重点水利工程建设全面提速,数字孪生赋能智慧水利

一、水利工程行业概述和分类 从定义上来看&#xff0c;水利工程是用于控制和调配自然界的地表水和地下水&#xff0c;达到除害兴利目的而修建的工程。也称为水工程。 根据观研报告网发布的《中国水利工程行业现状深度调研与投资趋势预测报告&#xff08;2023-2030年&#xff…

入门jdk1.8处理空指针API-Optional

文章目录 入门jdk1.8处理空指针API-Optional类图结构简要说明常用api实践操作应用场景场景一&#xff1a; 对象不为空&#xff0c;做一些逻辑处理场景二&#xff1a;对象为空抛异常&#xff0c;或者对象某个字段为空抛指定异常场景三&#xff1a;级联判空&#xff0c;父节点&am…

【Control Net】第二章——模型介绍,线稿类

ControlNet1.1版本中发布了15个模型,有点过于多了。这里给分成三类: 线稿类(5个) 线稿类顾名思义,是处理线稿的,或者把图片提取成线稿的。 Canny,硬边缘提取 最早的边缘提取算法,提取的效果已经不如Lineart效果好了,处理有些粗糙。 MLSD,直线检测 可以识别建筑、…

【Linux】查看系统内存命令(详细讲解)

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

【Apollo】赋能移动性:阿波罗自动驾驶系统的影响

前言 Apollo (阿波罗)是一个开放的、完整的、安全的平台&#xff0c;将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统&#xff0c;快速搭建一套属于自己的自动驾驶系统。 开放能力、共享资源、加速创新、持续共赢是 Apollo 开放平台的口号。百度把自己所拥有的强大、…

Nvidia Jetson 编解码开发(1)介绍

前言 由于项目需要,需要开发Jetson平台的硬件编解码; 优化CPU带宽,后续主要以介绍硬件编解码为主 1.Jetson各平台编解码性能说明 如下是拿了Jetson nano/tx2/Xavier等几个平台做对比; 这里说明的编解码性能主要是对硬件来说的 2. 编解码实现说明 2.1 软件编解码 优点:…