2023国赛数学建模思路 - 复盘:校园消费行为分析

news2025/1/17 23:10:43

文章目录

  • 0 赛题思路
  • 1 赛题背景
  • 2 分析目标
  • 3 数据说明
  • 4 数据预处理
  • 5 数据分析
    • 5.1 食堂就餐行为分析
    • 5.2 学生消费行为分析
  • 建模资料

0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 赛题背景

校园一卡通是集身份认证、金融消费、数据共享等多项功能于一体的信息集成系统。在为师生提供优质、高效信息化服务的同时,系统自身也积累了大量的历史记录,其中蕴含着学生的消费行为以及学校食堂等各部门的运行状况等信息。

很多高校基于校园一卡通系统进行“智慧校园”的相关建设,例如《扬子晚报》2016年 1月 27日的报道:《南理工给贫困生“暖心饭卡补助”》。

不用申请,不用审核,饭卡上竟然能悄悄多出几百元……记者昨天从南京理工大学独家了解到,南理工教育基金会正式启动了“暖心饭卡”

项目,针对特困生的温饱问题进行“精准援助”。

项目专门针对贫困本科生的“温饱问题”进行援助。在学校一卡通中心,教育基金会的工作人员找来了全校一万六千余名在校本科生 9 月中旬到 11月中旬的刷卡记录,对所有的记录进行了大数据分析。最终圈定了 500余名“准援助对象”。

南理工教育基金会将拿出“种子基金”100万元作为启动资金,根据每位贫困学生的不同情况确定具体的补助金额,然后将这些钱“悄无声息”的打入学生的饭卡中,保证困难学生能够吃饱饭。

——《扬子晚报》2016年 1月 27日:南理工给贫困生“暖心饭卡补助”本赛题提供国内某高校校园一卡通系统一个月的运行数据,希望参赛者使用

数据分析和建模的方法,挖掘数据中所蕴含的信息,分析学生在校园内的学习生活行为,为改进学校服务并为相关部门的决策提供信息支持。

2 分析目标

  • 1. 分析学生的消费行为和食堂的运营状况,为食堂运营提供建议。

  • 2. 构建学生消费细分模型,为学校判定学生的经济状况提供参考意见。

3 数据说明

附件是某学校 2019年 4月 1 日至 4月 30日的一卡通数据

一共3个文件:data1.csv、data2.csv、data3.csv
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4 数据预处理

将附件中的 data1.csv、data2.csv、data3.csv三份文件加载到分析环境,对照附录一,理解字段含义。探查数据质量并进行缺失值和异常值等方面的必要处理。将处理结果保存为“task1_1_X.csv”(如果包含多张数据表,X可从 1 开始往后编号),并在报告中描述处理过程。

import numpy as np
import pandas as pd
import os
os.chdir('/home/kesci/input/2019B1631')
data1 = pd.read_csv("data1.csv", encoding="gbk")
data2 = pd.read_csv("data2.csv", encoding="gbk")
data3 = pd.read_csv("data3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

data1.columns = ['序号', '校园卡号', '性别', '专业名称', '门禁卡号']
data1.dtypes

在这里插入图片描述

data1.to_csv('/home/kesci/work/output/2019B/task1_1_1.csv', index=False, encoding='gbk')
data2.head(3)

在这里插入图片描述
将 data1.csv中的学生个人信息与 data2.csv中的消费记录建立关联,处理结果保存为“task1_2_1.csv”;将 data1.csv 中的学生个人信息与data3.csv 中的门禁进出记录建立关联,处理结果保存为“task1_2_2.csv”。

data1 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_1.csv", encoding="gbk")
data2 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_2.csv", encoding="gbk")
data3 = pd.read_csv("/home/kesci/work/output/2019B/task1_1_3.csv", encoding="gbk")
data1.head(3)

在这里插入图片描述

5 数据分析

5.1 食堂就餐行为分析

绘制各食堂就餐人次的占比饼图,分析学生早中晚餐的就餐地点是否有显著差别,并在报告中进行描述。(提示:时间间隔非常接近的多次刷卡记录可能为一次就餐行为)

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

import matplotlib as mpl
import matplotlib.pyplot as plt
# notebook嵌入图片
%matplotlib inline
# 提高分辨率
%config InlineBackend.figure_format='retina'
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/home/kesci/work/SimHei.ttf")
import warnings
warnings.filterwarnings('ignore')
canteen1 = data['消费地点'].apply(str).str.contains('第一食堂').sum()
canteen2 = data['消费地点'].apply(str).str.contains('第二食堂').sum()
canteen3 = data['消费地点'].apply(str).str.contains('第三食堂').sum()
canteen4 = data['消费地点'].apply(str).str.contains('第四食堂').sum()
canteen5 = data['消费地点'].apply(str).str.contains('第五食堂').sum()
# 绘制饼图
canteen_name = ['食堂1', '食堂2', '食堂3', '食堂4', '食堂5']
man_count = [canteen1,canteen2,canteen3,canteen4,canteen5]
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("食堂就餐人次占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述
通过食堂刷卡记录,分别绘制工作日和非工作日食堂就餐时间曲线图,分析食堂早中晚餐的就餐峰值,并在报告中进行描述。

在这里插入图片描述

# 对data中消费时间数据进行时间格式转换,转换后可作运算,coerce将无效解析设置为NaT
data.loc[:,'消费时间'] = pd.to_datetime(data.loc[:,'消费时间'],format='%Y-%m-%d %H:%M',errors='coerce')
data.dtypes
# 创建一个消费星期列,根据消费时间计算出消费时间是星期几,Monday=1, Sunday=7
data['消费星期'] = data['消费时间'].dt.dayofweek + 1
data.head(3)
# 以周一至周五作为工作日,周六日作为非工作日,拆分为两组数据
work_day_query = data.loc[:,'消费星期'] <= 5
unwork_day_query = data.loc[:,'消费星期'] > 5

work_day_data = data.loc[work_day_query,:]
unwork_day_data = data.loc[unwork_day_query,:]
# 计算工作日消费时间对应的各时间的消费次数
work_day_times = []
for i in range(24):
    work_day_times.append(work_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24):
    x.append('{:02d}:00'.format(i))
# 绘图
plt.plot(x, work_day_times, label='工作日')
# x,y轴标签
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
# 标题
plt.title('工作日消费曲线图', fontproperties=font)
# x轴倾斜60度
plt.xticks(rotation=60)
# 显示label
plt.legend(prop=font)
# 加网格
plt.grid()

在这里插入图片描述

# 计算飞工作日消费时间对应的各时间的消费次数
unwork_day_times = []
for i in range(24):
    unwork_day_times.append(unwork_day_data['消费时间'].apply(str).str.contains(' {:02d}:'.format(i)).sum())
    # 以时间段作为x轴,同一时间段出现的次数和作为y轴,作曲线图
x = []
for i in range(24): 
    x.append('{:02d}:00'.format(i))
plt.plot(x, unwork_day_times, label='非工作日')
plt.xlabel('时间', fontproperties=font);
plt.ylabel('次数', fontproperties=font)
plt.title('非工作日消费曲线图', fontproperties=font)
plt.xticks(rotation=60)
plt.legend(prop=font)
plt.grid()

在这里插入图片描述
根据上述分析的结果,很容易为食堂的运营提供建议,比如错开高峰等等。

5.2 学生消费行为分析

根据学生的整体校园消费数据,计算本月人均刷卡频次和人均消费额,并选择 3个专业,分析不同专业间不同性别学生群体的消费特点。

data = pd.read_csv('/home/kesci/work/output/2019B/task1_2_1.csv', encoding='gbk')
data.head()

在这里插入图片描述

# 计算人均刷卡频次(总刷卡次数/学生总人数)
cost_count = data['消费时间'].count()
student_count = data['校园卡号'].value_counts(dropna=False).count()
average_cost_count = int(round(cost_count / student_count))
average_cost_count


# 计算人均消费额(总消费金额/学生总人数)
cost_sum = data['消费金额'].sum()
average_cost_money = int(round(cost_sum / student_count))
average_cost_money


# 选择消费次数最多的3个专业进行分析
data['专业名称'].value_counts(dropna=False)

在这里插入图片描述

# 消费次数最多的3个专业为 连锁经营、机械制造、会计
major1 = data['专业名称'].apply(str).str.contains('18连锁经营')
major2 = data['专业名称'].apply(str).str.contains('18机械制造')
major3 = data['专业名称'].apply(str).str.contains('18会计')
major4 = data['专业名称'].apply(str).str.contains('18机械制造(学徒)')

data_new = data[(major1 | major2 | major3) ^ major4]
data_new['专业名称'].value_counts(dropna=False)


 分析 每个专业,不同性别 的学生消费特点
data_male = data_new[data_new['性别'] == '男']
data_female = data_new[data_new['性别'] == '女']
data_female.head()

在这里插入图片描述
根据学生的整体校园消费行为,选择合适的特征,构建聚类模型,分析每一类学生群体的消费特点。

data['专业名称'].value_counts(dropna=False).count()
# 选择特征:性别、总消费金额、总消费次数
data_1 = data[['校园卡号','性别']].drop_duplicates().reset_index(drop=True)
data_1['性别'] = data_1['性别'].astype(str).replace(({'男': 1, '女': 0}))
data_1.set_index(['校园卡号'], inplace=True)
data_2 = data.groupby('校园卡号').sum()[['消费金额']]
data_2.columns = ['总消费金额']
data_3 = data.groupby('校园卡号').count()[['消费时间']]
data_3.columns = ['总消费次数']
data_123 =  pd.concat([data_1, data_2, data_3], axis=1)#.reset_index(drop=True)
data_123.head()

# 构建聚类模型
from sklearn.cluster import KMeans
# k为聚类类别,iteration为聚类最大循环次数,data_zs为标准化后的数据
k = 3    # 分成几类可以在此处调整
iteration = 500
data_zs = 1.0 * (data_123 - data_123.mean()) / data_123.std()
# n_jobs为并发数
model = KMeans(n_clusters=k, n_jobs=4, max_iter=iteration, random_state=1234)
model.fit(data_zs)
# r1统计各个类别的数目,r2找出聚类中心
r1 = pd.Series(model.labels_).value_counts()
r2 = pd.DataFrame(model.cluster_centers_)
r = pd.concat([r2,r1], axis=1)
r.columns = list(data_123.columns) + ['类别数目']


# 选出消费总额最低的500名学生的消费信息
data_500 = data.groupby('校园卡号').sum()[['消费金额']]
data_500.sort_values(by=['消费金额'],ascending=True,inplace=True,na_position='first')
data_500 = data_500.head(500)
data_500_index = data_500.index.values
data_500 = data[data['校园卡号'].isin(data_500_index)]
data_500.head(10)

在这里插入图片描述

# 绘制饼图
canteen_name = list(data_max_place.index)
man_count = list(data_max_place.values)
# 创建画布
plt.figure(figsize=(10, 6), dpi=50)
# 绘制饼图
plt.pie(man_count, labels=canteen_name, autopct='%1.2f%%', shadow=False, startangle=90, textprops={'fontproperties':font})
# 显示图例
plt.legend(prop=font)
# 添加标题
plt.title("低消费学生常消费地点占比饼图", fontproperties=font)
# 饼图保持圆形
plt.axis('equal')
# 显示图像
plt.show()

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/888416.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity如何控制声音大小(包括静音功能)

一&#xff1a;UGUI制作 1. 首先在【层级】下面创建UI里面的Slider组件。设置好它对应的宽度和高度。 2.调整Slider滑动条的填充颜色。一般声音颜色我黄色&#xff0c;所以我们也调成黄色。 我们尝试滑动Slider里面的value。 a.滑动前。 b.滑动一半。 c.滑动完。 从以上滑动va…

Cat(2):下载与安装

1 github源码下载 要安装CAT&#xff0c;首先需要从github上下载最新版本的源码。 官方给出的建议如下&#xff1a; 注意cat的3.0代码分支更新都发布在master上&#xff0c;包括最新文档也都是这个分支注意文档请用最新master里面的代码文档作为标准&#xff0c;一些开源网站…

8月14-15日上课内容 LVS负载均衡的群集

知识点&#xff1a; 本章结构: 企业群集概述 集群的含义&#xff1a; 1、群集的含义 ①、Cluster、集群、群集 ②、由多台主机构成&#xff0c;但对外只表现为一个整体&#xff0c;只提供一个访问入口&#xff08;域名与IP地址&#xff09;&#xff0c;相当于一台大型计算机。…

TypeScript相关面试题

typeScript 1.什么是TypeScript?是什么&#xff1f;特性&#xff1f;区别&#xff1f; 2.TypeScript数据类型&#xff1f;3.说说你对 TypeScript 中枚举类型的理解&#xff1f;应用场景&#xff1f;4.说说你对 TypeScript 中接口的理解&#xff1f;应用场景&#xff1f;使用方…

面试题. 分割链表

给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 示例 1&#xff1a; 输入&#xff1a;head [1,4,3,2,5,2], x 3 输出&a…

C#学习....

1.基础 //引用命名空间using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;//项目名或者命名空间 namespace _01_MY_First_Demo {//Program类class Program{//程序的主入口或者Main函数static void Main(S…

大模型是什么?大模型可以在哪些场景应用落地?

大模型是什么&#xff1f;大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域&#xff0c;大模型通常是指具有数百万到数十亿参数的神经网络模型。 大模型是指模型具有庞大的参数规模和复杂程度的机器学习模型。在深度学习领域&#xff0c;大模型通常是…

实验三十、压控振荡电路的测量

一、题目 利用 Multisim 分析图1所示电路&#xff0c;测试各项指标参数。 图 1 压控振荡电路 图1\,\,压控振荡电路 图1压控振荡电路 二、仿真电路 仿真电路如图2(a)所示&#xff0c;其中 A 1 \textrm A_1 A1​ 采用通用型集成运放 LM324AJ&#xff0c; A 2 \textrm A_2 A2​…

Java进阶(2)——结合源码深入理解final关键字,修饰数据,方法,类

目录 引出深入理解final关键字final修饰数据基本数据类型对象的引用空白final final修饰方法final修饰类总结 引出 1.在java源码中较多使用final修饰数据&#xff0c;比如ArrayList的初始长度&#xff1b; 2.final关键字修饰对象的引用的特点理解&#xff1b; 3.了解一下空白fi…

地址在数据线和地址线上怎么传?

如下图所示&#xff0c;对于地址总线&#xff0c;其传输方向是单向的&#xff0c;是只能由CPU发出&#xff0c;即只能用于CPU选择主存地址或I/O端口地址&#xff0c;并不能从主存或IO端口发到CPU。 相关题目&#xff1a; 在系统总线的数据线上&#xff0c;不可能传输的是&am…

试卷去痕迹app分享,轻松擦除答案痕迹

在考试中&#xff0c;不小心写错答案是常有的事情。如果你是用铅笔写的&#xff0c;那么你可以直接用橡皮擦擦除。但如果你是用钢笔或圆珠笔写的&#xff0c;该怎么办呢&#xff1f;现在有一些APP可以帮助你擦除答案&#xff0c;以下是一些值得尝试的APP分享。 1.拍试卷 拍试卷…

堆叠聚合模型与单独的逻辑回归模型处理非平衡数据的比较

堆叠聚合模型与单独的逻辑回归模型处理非平衡数据的比较 堆叠聚合模型的设计是通过训练多个模型&#xff0c;然后使用原模型&#xff0c;将多个模型的输出结果整合在一起以实现更准确的预测。这叠聚合模型在多个临床场景上都表现出优于单一模型的效能[1]。是构建临床预测模型过…

java之juc二

JMM 请你谈谈对Volatile的理解 Volatile是jvm提供的轻量级的同步机制&#xff08;和synchronized差不多&#xff0c;但是没有synchronized那么强大&#xff09; 保证可见性不保证原子性禁止指令重排 什么是JMM JMM&#xff1a;java内存模型&#xff0c;不存在的东西&#…

UE_移动端测试使用

教程流程&#xff1a; 参照官方文档-android篇&#xff1a; https://docs.unrealengine.com/5.1/zh-CN/android-development-requirements-for-unreal-engine/https://docs.unrealengine.com/5.1/zh-CN/android-development-requirements-for-unreal-engine/ AS下载&#xf…

点云滤波介绍

一、介绍 1、Filtering a PointCloud using a PassThrough filter 2、Downsampling a PointCloud using a VoxelGrid filter 3、Removing sparse outliers using StatisticalOutlierRemoval 4、Projecting points using a parametric model 数据集&#xff1a;链接&#x…

mysql mysql 容器 忽略大小写配置

首先能够连接上mysql&#xff0c;然后输入下面这个命令查看mysql是否忽略大小写 show global variables like %lower_case%; lower_case_table_names 0&#xff1a;不忽略大小写 lower_case_table_names 1&#xff1a;忽略大小写 mysql安装分为两种&#xff08;根据自己的my…

移动端身份证识别技术的应用,告别手动录入证件信息

随着移动互联网的的发展&#xff0c;越来越多的公司都推出了自己的移动APP&#xff0c;这些APP多数都涉及到个人身份证信息的输入认证&#xff08;即实名认证&#xff09;&#xff0c;如果手动去输入身份证号码和姓名&#xff0c;速度非常慢&#xff0c;且用户体验非常差。为了…

MotionBERT:人体运动表征

MotionBERT&#xff1a;A Unified Perspective on Learning Human Motion Representations解析 摘要1. 简介2. Related Work2.1 学习人体运动表征2.2 3D人体姿态估计2.3 基于骨骼的动作识别2.3 人体网格恢复 3. Method3.1 Overview3.2 网络架构Spatial BlockTemporal BlockDual…

MybatisPlus整合p6spy组件SQL分析

目录 p6spy java为什么需要 如何使用 其他配置 p6spy p6spy是一个开源项目&#xff0c;通常使用它来跟踪数据库操作&#xff0c;查看程序运行过程中执行的sql语句。 p6spy将应用的数据源给劫持了&#xff0c;应用操作数据库其实在调用p6spy的数据源&#xff0c;p6spy劫持到…

Python项目中怎么实现异步任务和定时任务

这里写目录标题 一、异步任务:二、定时任务:三、Celery介绍特点:Celery由三部分构成:工作原理:安装Celery选择一个Broker:RabbitMQKafka和RabbitMQ的区别:定义一个任务定义第二个任务定义一个生产者(producer) 来 调用异步任务启动celery服务定义一个获取结果的类定时任…