【Linux操作系统】举例解释Linux系统编程中文件io常用的函数

news2025/1/18 6:16:13

在Linux系统编程中,文件IO操作是非常常见和重要的操作之一。通过文件IO操作,我们可以打开、读取、写入和关闭文件,对文件进行定位、复制、删除和重命名等操作。本篇博客将介绍一些常用的文件IO操作函数。
在这里插入图片描述

文章目录

    • 1. open()
      • 1.1 原型、参数及返回值说明
        • 1.1.1 原型:
        • 1.1.2 参数说明:
        • 1.1.3 返回值:
      • 1.2 函数示例
      • 1.3 代码解释
    • 2. close()
      • 2.1 原型、参数及返回值说明
        • 2.1.1 原型:
        • 2.1.2 参数:
        • 2.1.3 返回值:
      • 2.2 函数示例
      • 2.3 代码解释
    • 3. read()
      • 3.1 原型、参数及返回值说明
        • 3.1.1 原型:
        • 3.1.2 参数:
        • 3.1.3 返回值:
      • 3.2 函数示例
      • 3.3 代码解释
    • 4. write()
      • 4.1 原型、参数及返回值说明
        • 4.1.1 原型:
        • 4.1.2 参数:
        • 4.1.3 返回值:
      • 4.2 函数示例
      • 4.3 代码解释
    • 5. lseek()
      • 5.1 原型、参数及返回值说明
        • 5.1.1 原型:
        • 5.1.2 参数:
        • 5.1.3 返回值:
      • 5.2 函数示例
      • 5.3 代码解释
    • 6. stat()
      • 6.1 原型、参数及返回值说明
        • 6.1.1 原型:
        • 6.1.2 参数:
        • 6.1.3 返回值:
      • 6.2 函数示例
      • 6.3 代码解释
    • 7. fcntl()
      • 7.1 原型、参数及返回值说明
        • 7.1.1 原型:
        • 7.1.2 参数:
        • 7.1.3 返回值:
      • 7.2 函数示例
      • 7.3 代码解释
    • 总结

1. open()

1.1 原型、参数及返回值说明

1.1.1 原型:

open()函数是Linux系统编程中常用的文件IO操作函数之一。它用于打开文件并返回一个文件描述符,以便后续的文件读写操作。
open()函数的原型如下:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, mode_t mode);

1.1.2 参数说明:

  1. pathname:要打开的文件路径名。
  2. flags:打开文件的模式标志,可以是以下几种模式的组合:
    • O_RDONLY:只读模式打开文件。
    • O_WRONLY:只写模式打开文件。
    • O_RDWR:读写模式打开文件。
    • O_CREAT:如果文件不存在,则创建文件。
    • O_EXCL:与O_CREAT一同使用,如果文件已存在,则返回错误。
    • O_TRUNC:如果文件存在且以可写模式打开,则将文件截断为0。
    • O_APPEND:在文件末尾追加数据。
  3. mode 创建文件时的访问权限,只有在使用O_CREAT时才有效。
    可以使用如下几个宏来设置权限:
    • S_IRUSR:用户读权限。
    • S_IWUSR:用户写权限。
    • S_IXUSR:用户执行权限。
    • S_IRGRP:组读权限。
    • S_IWGRP:组写权限。
    • S_IXGRP:组执行权限。
    • S_IROTH:其他用户读权限。
    • S_IWOTH:其他用户写权限。
    • S_IXOTH:其他用户执行权限。

1.1.3 返回值:

  • 成功:返回一个非负整数的文件描述符,用于后续的文件IO操作。
  • 失败:返回-1,并设置errno变量来指示错误类型。

1.2 函数示例

下面是一个使用open()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

int main() {
    int fd;

    // 打开文件
    fd = open("example.txt", O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 写入数据
    char buffer[] = "Hello, world!";
    ssize_t ret = write(fd, buffer, sizeof(buffer) - 1);
    if (ret == -1) {
        perror("write");
        close(fd);
        return errno;
    }

    // 关闭文件
    close(fd);

    return 0;
}

1.3 代码解释

在上述示例中,我们首先使用open()函数以只写模式打开一个文件example.txt。如果文件不存在,则创建该文件,并设置访问权限为用户可读可写。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

接下来,我们使用write()函数向文件中写入数据。在本例中,我们写入了字符串"Hello, world!"。如果写入数据失败,我们同样使用perror()函数打印错误信息,并在关闭文件前返回errno变量。

最后,我们使用close()函数关闭文件。

2. close()

2.1 原型、参数及返回值说明

2.1.1 原型:

close()函数是Linux系统编程中用于关闭文件的函数。它接受一个文件描述符作为参数,并返回一个整数值来指示操作是否成功。

close()函数的原型如下:

#include <unistd.h>

int close(int fd);

2.1.2 参数:

  • fd:要关闭的文件描述符。

2.1.3 返回值:

  • 成功:返回0。
  • 失败:返回-1,并设置errno变量来指示错误类型。

2.2 函数示例

下面是一个使用close()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

int main() {
    int fd;

    // 打开文件
    fd = open("example.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 关闭文件
    int ret = close(fd);
    if (ret == -1) {
        perror("close");
        return errno;
    }

    return 0;
}

2.3 代码解释

在上述示例中,我们首先使用open()函数以只读模式打开一个文件example.txt,并将返回的文件描述符存储在变量fd中。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

接下来,我们使用close()函数关闭文件。如果关闭文件失败,我们同样使用perror()函数打印错误信息,并返回errno变量。

需要注意的是,关闭文件后,我们不应再对该文件描述符进行任何操作。

3. read()

3.1 原型、参数及返回值说明

3.1.1 原型:

read()函数是Linux系统编程中用于从文件中读取数据的函数。它接受一个文件描述符、一个缓冲区地址和一个读取的最大字节数作为参数,并返回实际读取的字节数。

read()函数的原型如下:

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

3.1.2 参数:

  • fd:要读取的文件的文件描述符。
  • buf:用于存储读取数据的缓冲区的地址。
  • count:要读取的最大字节数。

3.1.3 返回值:

  • 成功:返回实际读取的字节数。
  • 失败:返回-1,并设置errno变量来指示错误类型。

3.2 函数示例

下面是一个使用read()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

int main() {
    int fd;

    // 打开文件
    fd = open("example.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 读取数据
    char buffer[100];
    ssize_t ret = read(fd, buffer, sizeof(buffer));
    if (ret == -1) {
        perror("read");
        close(fd);
        return errno;
    }

    // 输出读取的数据
    printf("Read %ld bytes: %s\n", ret, buffer);

    // 关闭文件
    close(fd);

    return 0;
}

3.3 代码解释

在上述示例中,我们首先使用open()函数以只读模式打开一个文件example.txt,并将返回的文件描述符存储在变量fd中。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

接下来,我们使用read()函数从文件中读取数据。我们定义一个长度为100的缓冲区buffer,并将其作为参数传递给read()函数。read()函数将尽量读取count个字节的数据,并将其存储在缓冲区中。如果读取数据失败,我们同样使用perror()函数打印错误信息,并在关闭文件前返回errno变量。

最后,我们使用printf()函数输出读取的数据,并使用close()函数关闭文件。

需要注意的是,read()函数是一个阻塞函数,如果文件中没有足够的数据可读,它将一直等待直到有足够的数据可读或者发生错误。如果需要非阻塞地读取数据,可以使用fcntl()函数设置文件描述符为非阻塞模式。

4. write()

4.1 原型、参数及返回值说明

4.1.1 原型:

write()函数是Linux系统编程中用于向文件中写入数据的函数。它接受一个文件描述符、一个数据缓冲区地址和要写入的字节数作为参数,并返回实际写入的字节数。

write()函数的原型如下:

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

4.1.2 参数:

  • fd:要写入的文件的文件描述符。
  • buf:要写入的数据的缓冲区的地址。
  • count:要写入的字节数。

4.1.3 返回值:

  • 成功:返回实际写入的字节数。
  • 失败:返回-1,并设置errno变量来指示错误类型。

4.2 函数示例

下面是一个使用write()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

int main() {
    int fd;

    // 打开文件
    fd = open("example.txt", O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 写入数据
    char buffer[] = "Hello, World!";
    ssize_t ret = write(fd, buffer, sizeof(buffer) - 1);
    if (ret == -1) {
        perror("write");
        close(fd);
        return errno;
    }

    // 关闭文件
    close(fd);

    return 0;
}

4.3 代码解释

在上述示例中,我们首先使用open()函数以只写模式打开一个文件example.txt,并将返回的文件描述符存储在变量fd中。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

接下来,我们使用write()函数将数据写入文件中。我们定义一个字符串buffer,并将其作为参数传递给write()函数。write()函数将尽量写入count个字节的数据到文件中。如果写入数据失败,我们同样使用perror()函数打印错误信息,并在关闭文件前返回errno变量。

最后,我们使用close()函数关闭文件。

需要注意的是,write()函数是一个阻塞函数,如果文件无法立即接受写入的数据(例如,磁盘空间不足),它将一直等待直到可以写入数据或者发生错误。如果需要非阻塞地写入数据,可以使用fcntl()函数设置文件描述符为非阻塞模式。

5. lseek()

5.1 原型、参数及返回值说明

5.1.1 原型:

lseek()函数是Linux系统编程中用于在文件中定位读写位置的函数。它接受一个文件描述符、一个偏移量和一个起始位置作为参数,并返回新的读写位置。

lseek()函数的原型如下:

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

5.1.2 参数:

  • fd:要定位的文件的文件描述符。
  • offset:偏移量,可以是正数、负数或零。
  • whence:起始位置,可以取以下三个值:
    • SEEK_SET:从文件开头开始计算偏移量。
    • SEEK_CUR:从当前读写位置开始计算偏移量。
    • SEEK_END:从文件末尾开始计算偏移量。

5.1.3 返回值:

  • 成功:返回新的读写位置。
  • 失败:返回-1,并设置errno变量来指示错误类型。

5.2 函数示例

下面是一个使用lseek()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>

int main() {
    int fd;

    // 打开文件
    fd = open("example.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 定位读写位置
    off_t ret = lseek(fd, 5, SEEK_SET);
    if (ret == -1) {
        perror("lseek");
        close(fd);
        return errno;
    }

    // 读取数据
    char buffer[10];
    ssize_t n = read(fd, buffer, sizeof(buffer) - 1);
    if (n == -1) {
        perror("read");
        close(fd);
        return errno;
    }
    buffer[n] = '\0';
    printf("Data: %s\n", buffer);

    // 关闭文件
    close(fd);

    return 0;
}

5.3 代码解释

在上述示例中,我们首先使用open()函数以只读模式打开一个文件example.txt,并将返回的文件描述符存储在变量fd中。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

接下来,我们使用lseek()函数将读写位置定位到文件开头后的第5个字节。我们将文件描述符、偏移量和起始位置作为参数传递给lseek()函数。如果定位读写位置失败,我们同样使用perror()函数打印错误信息,并在关闭文件前返回errno变量。

然后,我们使用read()函数从文件中读取数据。我们定义一个缓冲区buffer,并将其作为参数传递给read()函数。read()函数将尽量读取count个字节的数据到缓冲区中。如果读取数据失败,我们同样使用perror()函数打印错误信息,并在关闭文件前返回errno变量。最后,我们在缓冲区末尾添加一个空字符,并使用printf()函数打印读取到的数据。

最后,我们使用close()函数关闭文件。

需要注意的是,lseek()函数可以用于定位读写位置,但并不会改变文件的大小。如果需要改变文件的大小,可以使用truncate()函数或ftruncate()函数。

6. stat()

6.1 原型、参数及返回值说明

6.1.1 原型:

stat()函数是Linux系统编程中用于获取文件信息的函数。它接受一个文件路径作为参数,并返回一个包含文件信息的结构体。

stat()函数的原型如下:

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *pathname, struct stat *buf);

6.1.2 参数:

  • pathname:要获取信息的文件路径。
  • buf:用于存储文件信息的结构体指针。

6.1.3 返回值:

  • 成功:返回0。
  • 失败:返回-1,并设置errno变量来指示错误类型。

struct stat结构体包含了文件的各种信息,包括文件类型、权限、大小、创建时间、修改时间等

下面是struct stat结构体的定义:

struct stat {
    dev_t     st_dev;         // 文件所在设备的ID
    ino_t     st_ino;         // 文件的inode号
    mode_t    st_mode;        // 文件的类型和权限
    nlink_t   st_nlink;       // 文件的硬链接数
    uid_t     st_uid;         // 文件的所有者ID
    gid_t     st_gid;         // 文件的所有者组ID
    dev_t     st_rdev;        // 如果文件是设备文件,则为设备的ID
    off_t     st_size;        // 文件的大小(字节)
    blksize_t st_blksize;     // 文件系统的块大小
    blkcnt_t  st_blocks;      // 分配给文件的块数
    time_t    st_atime;       // 文件的最后访问时间
    time_t    st_mtime;       // 文件的最后修改时间
    time_t    st_ctime;       // 文件的最后状态改变时间
};

6.2 函数示例

下面是一个使用stat()函数的示例:

#include <sys/types.h>
#include <sys/stat.h>
#include <stdio.h>
#include <errno.h>

int main() {
    const char *pathname = "example.txt";
    struct stat file_info;

    // 获取文件信息
    int ret = stat(pathname, &file_info);
    if (ret == -1) {
        perror("stat");
        return errno;
    }

    // 打印文件信息
    printf("File Size: %ld bytes\n", file_info.st_size);
    printf("File Permissions: %o\n", file_info.st_mode & 0777);
    printf("File Owner UID: %d\n", file_info.st_uid);
    printf("File Owner GID: %d\n", file_info.st_gid);

    return 0;
}

6.3 代码解释

在上述示例中,我们首先定义了一个文件路径pathname和一个struct stat结构体file_info,用于存储获取到的文件信息。

然后,我们使用stat()函数将文件信息存储到file_info结构体中。我们将文件路径和file_info结构体指针作为参数传递给stat()函数。如果获取文件信息失败,我们使用perror()函数打印错误信息,并返回errno变量。

最后,我们使用printf()函数打印获取到的文件信息,包括文件大小、文件权限、文件所有者的UIDGID等。

需要注意的是,stat()函数只能获取文件的信息,而不能修改文件的信息。如果需要修改文件的信息,可以使用chmod()函数来修改文件的权限。

7. fcntl()

7.1 原型、参数及返回值说明

7.1.1 原型:

fcntl()函数是Linux系统编程中用于对文件描述符进行控制操作的函数。它可以用于设置文件状态标志、获取文件状态标志、设置文件锁等。

fcntl()函数的原型如下:

#include <fcntl.h>

int fcntl(int fd, int cmd, ... /* arg */ );

7.1.2 参数:

  • fd:文件描述符,可以是打开文件的文件描述符,也可以是套接字的文件描述符。
  • cmd:控制命令,用于指定要执行的操作。
  • arg:可选参数,用于传递特定操作的参数。

7.1.3 返回值:

  • 成功:根据不同的操作命令返回不同的值,一般为0或一个正整数。
  • 失败:返回-1,并设置errno变量来指示错误类型。

下面是fcntl()函数的一些常用命令:

  • F_DUPFD:复制文件描述符,创建一个新的文件描述符,该描述符与原始描述符指向相同的打开文件。
  • F_GETFD:获取文件描述符的文件状态标志。
  • F_SETFD:设置文件描述符的文件状态标志。
  • F_GETFL:获取文件的打开方式和状态标志。
  • F_SETFL:设置文件的打开方式和状态标志。
  • F_GETLK:获取文件锁的信息。
  • F_SETLK:设置文件锁。
  • F_SETLKW:设置文件锁,如果无法获取锁,则阻塞等待。

7.2 函数示例

下面是一个使用fcntl()函数的示例:

#include <fcntl.h>
#include <stdio.h>
#include <errno.h>

int main() {
    int fd = open("example.txt", O_RDWR);
    if (fd == -1) {
        perror("open");
        return errno;
    }

    // 获取文件的打开方式和状态标志
    int flags = fcntl(fd, F_GETFL);
    if (flags == -1) {
        perror("fcntl");
        return errno;
    }

    // 设置文件的状态标志为非阻塞
    flags |= O_NONBLOCK;
    int ret = fcntl(fd, F_SETFL, flags);
    if (ret == -1) {
        perror("fcntl");
        return errno;
    }

    // 关闭文件描述符
    close(fd);

    return 0;
}

7.3 代码解释

在上述示例中,我们首先使用open()函数打开一个文件,并将返回的文件描述符存储在变量fd中。如果打开文件失败,我们使用perror()函数打印错误信息,并返回errno变量。

然后,我们使用fcntl()函数获取文件的打开方式和状态标志。将文件描述符和F_GETFL命令作为参数传递给fcntl()函数,获取到的文件状态标志存储在变量flags中。如果获取文件状态标志失败,我们同样使用perror()函数打印错误信息,并返回errno变量。

接下来,我们将文件的状态标志设置为非阻塞,通过将O_NONBLOCK标志位与flags进行按位或操作。然后,我们使用fcntl()函数将修改后的状态标志设置回文件描述符。将文件描述符、F_SETFL命令和修改后的状态标志作为参数传递给fcntl()函数。如果设置文件状态标志失败,我们同样使用perror()函数打印错误信息,并返回errno变量。

最后,我们使用close()函数关闭文件描述符,释放资源。

需要注意的是,fcntl()函数的使用非常灵活,可以根据需要进行各种操作,如复制文件描述符、获取文件锁等。在使用fcntl()函数时,需要注意错误处理,并确保文件描述符的有效性。同时,需要在不再需要使用文件描述符时及时关闭文件描述符,以释放资源并避免资源泄漏。

总结

文件IO操作是Linux系统编程中的重要部分。通过open()close()read()write()等函数,我们可以对文件进行打开、读取和写入操作。通过lseek()函数,我们可以在文件中进行定位。而通过stat()fcntl()dup()等函数,我们可以获取文件的状态信息,对文件描述符进行控制操作,复制文件描述符等。

除了上述的函数,还有许多其他的函数可以用于文件IO操作,如mkdir()用于创建目录,rmdir()用于删除目录,unlink()用于删除文件,rename()用于重命名文件等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/884825.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言实例_奇偶校验算法

一、奇偶校验算法 奇偶校验算法&#xff08;Parity Check Algorithm&#xff09;是一种简单的错误检测方法&#xff0c;用于验证数据传输中是否发生了位错误。通过在数据中添加一个附加的奇偶位&#xff08;即校验位&#xff09;&#xff0c;来实现错误的检测和纠正。 在奇偶…

BGP知识点整理

BGP相关知识点 定义 又名&#xff1a;边界网关路由协议 属于无类别路径矢量协议 EGP—外部网关路由协议-包含BGP IGP内部网关路由协议-包含RIP OSPF EIGRP IGP协议追求&#xff1a;1、无环&#xff08;选路佳&#xff09; 2、收敛快 3、占用资源少 EGP协议的追求&#xff1a; 1…

照耀国产的星火,再度上新!

国产之光&#xff0c;星火闪耀 ⭐ 新时代的星火⭐ 多模态能力⭐ 图像生成与虚拟人视频生成⭐ 音频生成与OCR笔记收藏⭐ 助手模式更新⭐ 插件能力⭐ 代码能力⭐ 写在最后 ⭐ 新时代的星火 在这个快速变革的时代&#xff0c;人工智能正迅猛地催生着前所未有的革命。从医疗到金融…

当众讲话培训的需求分析

标题&#xff1a;当众讲话培训的需求分析 摘要&#xff1a;当众讲话是现代社会中一项重要的技能&#xff0c;对于个人和职业发展都具有重要意义。然而&#xff0c;许多人面临着当众讲话的困难和挑战。本论文旨在分析当众讲话培训的需求&#xff0c;探讨为什么人们需要这种培训…

【Java基础】Java对象的生命周期

【Java基础】Java对象的生命周期 一、概述 一个类通过编译器将一个Java文件编译为Class字节码文件&#xff0c;然后通过JVM中的解释器编译成不同操作系统的机器码。虽然操作系统不同&#xff0c;但是基于解释器的虚拟机是相同的。java类的生命周期就是指一个class文件加载到类…

C#__使用委托升级冒泡排序

// 员工类 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace Delegate委托 {class Employee // 员工类{public string Name { get; set; }public double Salary { get; set; }public Employee…

二叉树的存储结构(链式存储)—— 数据结构与算法

&#x1f636;‍&#x1f32b;️Take your time ! &#x1f636;‍&#x1f32b;️ &#x1f4a5;个人主页&#xff1a;&#x1f525;&#x1f525;&#x1f525;大魔王&#x1f525;&#x1f525;&#x1f525; &#x1f4a5;代码仓库&#xff1a;&#x1f525;&#x1f525;魔…

进行 200 瓦太阳能 (PV) 模块设计以测量太阳能光伏阵列的电压、电流和功率、综合负荷频率和电压控制系统的方法研究(Simulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

pycharm调整最大堆发挥最大

python程序运行时&#xff0c;怎么提高效率&#xff0c;设置pycharm最大堆过程如下&#xff1b; 一、进入设置pycharm最大堆&#xff1b; 二、进入设置pycharm最大堆&#xff1b; 如果8g设置为6g左右&#xff0c;占75%左右最佳

问题记录和细节补充

【问题记录】ORA-01400: 无法将 NULL 插入 Ajax 调用为Execute Server-Side Code返回了服务器错误ORA-01400: 无法将 NULL 插入 ("YWJA"."DEPT_TEST_WXX2"."DEPT_ID")。 原因&#xff1a;主键非自增&#xff0c;输入时并未有主键值传递&#x…

串是什么,串存储结构的3种实现方法

目录 串是什么&#xff0c;串存储结构的3种实现方法 串存储结构的具体实现 串的堆分配存储结构 串的块链存储结构 串是什么&#xff0c;串存储结构的3种实现方法 数据结构中&#xff0c;字符串要单独用一种存储结构来存储&#xff0c;称为串存储结构。这里的串指的就是字符…

判断Series序列是否含有空值NaN的Series.hasnans方法

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断Series序列是否含有空值NaN Series.hasnans [太阳]选择题 关于以下代码的说法中正确的是? import pandas as pd import numpy as np a pd.Series([1,np.nan],index["a","…

“想都是问题,干才是答案”是错误的,雷军说也不行

前几天&#xff0c;在为什么过去十年AI创业失败了一文中提了一个观点&#xff1a; “干就完了”式思维&#xff0c;是新式的刻舟求剑&#xff0c;剧毒&#xff0c;谁吃谁死。 没想到没过几天雷老板一个演讲又把这点炒到各个媒体的头条上&#xff0c;比如&#xff1a;“雷军20…

关于月球深层内部的谜团依然存在

地球物理数据表明&#xff0c;月球地幔的底部部分熔融或含有钛铁矿&#xff0c;但改进的流变学模型使这一层的存在受到质疑。 月球的内部结构只能使用远程地球物理数据来约束。一项新的分析表明&#xff0c;月球地幔深处的一个独特层&#xff0c;靠近深层月震发生的地方&#x…

大数据:Numpy基础应用详解

Numpy基础应用 Numpy 是一个开源的 Python 科学计算库&#xff0c;用于快速处理任意维度的数组。Numpy 支持常见的数组和矩阵操作&#xff0c;对于同样的数值计算任务&#xff0c;使用 NumPy 不仅代码要简洁的多&#xff0c;而且 NumPy 的性能远远优于原生 Python&#xff0c;…

小米平板6 Max 14评测:4窗口显示就是爽 多任务体验可媲美PC

一、前言&#xff1a;小米发布新款14英寸超大屏平板 专注生产力体验 加上网课、居家办公的普及&#xff0c;再加上各大手机厂商都开始搭建起自家的生态&#xff0c;尤其平板这个以往不被重视的品类&#xff0c;也开始找到了它自身的定位。 尤其在2023年上半年发布的小米平板6 P…

深入理解Vue 3.0x中的Suspense和异步组件

深入理解Vue 3.0x中的Suspense和异步组件 Vue 3.0x作为Vue.js框架的最新版本&#xff0c;引入了许多创新特性&#xff0c;其中Suspense和异步组件是重要的改进之一。在本文中&#xff0c;我们将深入探讨这两个特性&#xff0c;了解它们如何为现代Web应用带来更好的性能和用户体…

【C++11保姆级教程】final和override

文章目录 前言一、final关键字的使用1.1final关键字修饰类1.2final关键字修饰成员函数 1.3final的优势1.4final的劣势二、override关键字的使用2.1使用override关键字重写虚函数2.3override的优势 总结 前言 在C编程中&#xff0c;我们常常需要使用继承和多态来构建复杂的程序…

TTS | VocGAN声码器训练自己的数据集

哈喽&#xff0c;今天给大家介绍的是如何使用VocGAN声码器训练自己的数据集。 原文 VocGAN: A High-Fidelity Real-time Vocoder with a Hierarchically-nested Adversarial Network 想要论文解读&#xff0c;请参考我的这篇文章~ 本博客主要包括以下内容&#xff1a; 目录…

如何将短视频做成动态图?教你快速gif制作的方法

将产品或服务的短视频转换为gif图像后&#xff0c;可以在网站、电子邮件或社交媒体广告中使用&#xff0c;以吸引潜在客户的兴趣&#xff0c;那么怎么才能把短视频转gif图片呢&#xff1f;当然是使用专业的短视频转gif工具&#xff08;在线视频转换gif-视频转gif转换器-gif.cn_…