【看表情包学Linux】初识文件描述符 | 虚拟文件系统 (VFS) 初探 | 系统传递标记位 | O_TRUNC | O_APPEND

news2024/12/23 17:21:27

爆笑教程《看表情包学Linux》👈 猛戳订阅!​​​​​

💭 写在前面:通过上一章节的讲解,想必大家已对文件系统基本的接口有一个简单的了解,本章我们将继续深入讲解,继续学习系统传递标志位,介绍 O_WRONLY, O_TRUNC, O_APPEND 和 O_RDONLY。之后我们就正是打开文件描述符 fd 的大门了,之前我们所探讨讲解的系统文件操作,都是为了给文件描述符做铺垫的,可见这这一块知识点是相当的重要。话不多说,让我们正式开始本章的学习!

📜 本章目录:

Ⅰ. 系统传递标记位

0x00 引入:O_WRONLY 没有像 w 那样完全覆盖?

0x01 O_TRUNC 截断清空(对标 w)

0x02  O_APPEND 追加(对标 a)

0x03 O_REONLY 读取

Ⅱ. 文件描述符(fd)

0x00 引入:open 参数的返回值

0x01 文件描述符的底层理解

0x02 理解:Linux 下一切皆文件

0x03 初识 VFS(虚拟文件系统)

0x04 回头看问题:fd 的 0,1,2,3... 

   本篇博客全站热榜排名:未上榜


Ⅰ. 系统传递标记位

0x00 引入:O_WRONLY 没有像 w 那样完全覆盖?

C 语言在 w 模式打开文件时,文件内容是会被清空的,但是 O_WRONLY 好像并非如此?

💬 代码演示:当前我们的 log.txt 内有 5 行数据,现在我们执行下面的代码:

int main(void)
{
    umask(0);
    // 当我们只有 O_WRONLY 和 O_CREAT 时
    int fd = open("log.txt", O_WRONLY | O_CREAT, 0666);
    if (fd < 0) {
        perror("open"); 
        return 1;
    }
    printf("fd: %d\n", fd); 
    
    // 修改:向文件写入 2 行信息
    int cnt = 0;
    const char* str = "666\n";  // 修改:内容改成666(方便辨识)
    while (cnt < 2) {
       write(fd, str, strlen(str));
       cnt++;
    }

    close(fd);

    return 0;
}

🚩 运行结果如下:

❓ 疑点:O_WRONLY 怎么没有像 w 那样完全覆盖???

我们以前在 C 语言中,w 会覆盖把全部数据覆盖,每次执行代码可都是会清空文件内容的。 

而我们的 O_WRONLY 似乎没有全部覆盖,曾经的数据被保留了下来,并没有清空!

其实,没有清空根本就不是读写的问题,而是取决于有没有加 O_TRUNC 选项!

因此,只有 O_WRONLY 和 O_CREAT 选项是不够的:

  • 如果想要达到 w 的效果还需要增添 O_TRUNC
  • 如果想到达到 a 的效果还需要 O_APPEND

 下面我们就来介绍一下这两个选项!

0x01 O_TRUNC 截断清空(对标 w)

 在我们打开文件时,如果带上 O_TRUNC 选项,那么它将会清空原始文件。

如果文件存在,并且打开是为了写入,O_TRUNC 会将该文件长度缩短 (truncated) 为 0。

也就是所谓的 截断清空 (Truncate Empty) ,我们默认情况下文件系统调用接口不会清空文件的,

但如果你想清空,就需要给 open() 接口 带上 O_TRUNC 选项:

💬 代码演示:open() 达到 fopen"w" 模式的效果

int main(void)
{
    umask(0);
    int fd = open("log.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
    if (fd < 0) {
        perror("open"); 
        return 1;
    }
    printf("fd: %d\n", fd); 
    
    // 向文件写入 2 行信息
    int cnt = 0;
    const char* str = "666\n";
    while (cnt < 2) {
       write(fd, str, strlen(str));
       cnt++;
    }

    close(fd);

    return 0;
}

🚩 运行结果如下:

然而 C 语言的 fopen 函数,只需要浅浅地标上一个 "w" 就能搞定了:

fopen("log.txt", "w");

调一个 w 就以写的方式打开了,不存在会自动创建,并且会完全覆盖原始内容,是如此的简单!

它对应的底层 open 调用,调用接口所传入的选项就是 O_WRONLY, O_CREAT, O_TRUNC

由此可见,C 的 fopen 是多么的好用!open 不仅要传这么多选项,而且属性也要设置:

open("log.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
fopen("log.txt", "w");

0x02  O_APPEND 追加(对标 a)

上一章我们复习了 a 模式,C 语言中我们以 a 模式打开文件做到追加的效果。

现在我们用 open,追加是不清空原始内容的,所以我们不能加 O_TRUNC,得加 O_APPEND

int fd = open("log.txt", O_WRONLY | O_CREATE | O_APPEND, 0666);

💬 代码演示:open() 达到 fopen"a" 模式的效果

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int main(void)
{
    umask(0);
    int fd = open("log.txt", O_WRONLY | O_CREAT | O_APPEND, 0666);
    if (fd < 0) {
        perror("open"); 
        return 1;
    }
    printf("fd: %d\n", fd); 
    
    // 向文件写入 2 行信息
    int cnt = 0;
    const char* str = "666\n";
    while (cnt < 2) {
       write(fd, str, strlen(str));
       cnt++;
    }

    close(fd);

    return 0;
}

🚩 运行结果如下:

 我们再来对照 C 语言的 fopen,想做到这样的效果只需要一个 "a"

open("log.txt", O_WRONLY | O_CREAT | O_APPEND, 0666);
fopen("log.txt", "a");

实际上,系统级别的接口本来就是被文件接口封装的,fopen 是系统级文件接口的底层实现。

我们的 a, w, r... 在底层上实际上就是这些 "O_" 组合而成的,使用系统接口麻烦吗?

当然麻烦!要记这么多东西,当然还是 C 语言用的更爽了,一个字母标明文件模式就行了。

0x03 O_REONLY 读取

如果我们想读取一个文件,那么这个文件肯定是存在的,我们传 O_RDONLY 选项:

int main()
{
    umask(0);

    int fd = open("log.txt", O_RDONLY);
    if (fd < 0) {
        perror("open");
        return 1;
    }

    printf("fd: %d\n", fd);

    char buffer[128];
    ssize_t s = read(fd, buffer, sizeof(buffer) - 1);
    if (s > 0) {
        buffer[s] = '\0';  // 最后字符串序列设置为 '\0' 
        printf("%s", buffer);
    }


    close(fd);   
    
    return 0;
}

🚩 运行结果如下:

Ⅱ. 文件描述符(fd)

0x00 引入:open 参数的返回值

int fd = open("log.txt", O_WRONLY | O_CREAT, 0666);

我们使用 open 函数举的例子中,一直是用一个叫做 fd 的变量去接收的。

fopen 中我们习惯使用 fp pf 接收返回值,那是因为是 fopen 的返回值  FILE* 是文件指针,

file pointer 的缩写即是 fp,所以我们就习惯将这个接收 fopen 返回值的变量取名为 fp pf

那为什么接收 open 的返回值的变量要叫 fd 呢?

这个 fd 究竟是何方神圣?我们现在就揭开其神秘面纱,一睹芳容!它就是……

open 如果调用成功会返回一个新的 文件描述符 (file descriptor) ,如果失败会返回 -1 

  • \textrm{ fd} < 0 :失败 (success)
  • \textrm{fd} \geq 0 :成功 (failed)

💬 代码演示:我们现在多打开几个文件,观察 fd 的返回值

int main(void)
{
    int fd_1 = open("log1.txt", O_WRONLY | O_CREAT, 0666);
    int fd_2 = open("log2.txt", O_WRONLY | O_CREAT, 0666);
    int fd_3 = open("log3.txt", O_WRONLY | O_CREAT, 0666);
    int fd_4 = open("log4.txt", O_WRONLY | O_CREAT, 0666);
    int fd_5 = open("log5.txt", O_WRONLY | O_CREAT, 0666);

    printf("fd_1: %d\n", fd_1); 
    printf("fd_2: %d\n", fd_2); 
    printf("fd_3: %d\n", fd_3); 
    printf("fd_4: %d\n", fd_4); 
    printf("fd_5: %d\n", fd_5); 
    
    close(fd_1);
    close(fd_2);
    close(fd_3);
    close(fd_4);
    close(fd_5);

    return 0;
}

🚩 运行结果如下:

我们发现这 open 的 5 个文件的 \textrm{fd} (返回值) 分别是 3,4,5,6,7 ,那么问题了来了:

  为什么从 3 开始,而不是从 0 开始?0, 1, 2 去哪了?

  • 0标准输入(键盘,stdin)
  • 1标准输出(显示器,stdout)
  • 2标准错误(显示器,stderr)

 系统接口认的是外设,而 C 标准库函数认的是:

#include <stdio.h>

extern FILE* stdin;
extern FILE* stdout;
extern FILE* stderr;

系统调用接口!那么 stdin, stdout, stderr 和上面的 0,1,2 又有什么关系呢?

 想解决这个问题,我们得先说说 \textrm{FILE}

我们知道,FILE* 是文件指针,那么 \textrm{FILE} 是什么呢?它是 C 库提供的结构体。

只要是结构体,它内部一定封装了多个成员!

虽然 C 用的是 FILE*,但是系统的底层文件接口只认 \textrm{fd},也就是说:

C 标准库调用的系统接口,对文件操作而言,系统接口只认文件描述符。

" 文件操作的系统接口属于是六亲不认,只认 fd "

 因此,\textrm{FILE} 内部必定封装了文件操作符 \textrm{fd} !

下面我们来验证一下,先验证 0,1,2 就是标准 I/O

💬 代码验证:0 是标准输入 (stdin)

int main(void)
{
    // 验证 0,1,2 就是标准 I/O
    char buffer[1024];
    ssize_t s = read(0, buffer, sizeof(buffer) - 1);

    if (s > 0) {
        buffer[s] = '\0';

        printf("echo: %s", buffer);
    }
}

🚩 运行结果如下:

 

💬 代码验证:stdout 标准写入(1) 和 stderr 错误写入(2) :

int main(void)
{
    const char* s = "Hello, write something\n";
    write(1, s, strlen(s));  // 1:向标准输入写入
    write(2, s, strlen(s));  // 2:向标准错误写入
}

🚩 运行结果如下:

(1 和 2 的区别我们放到后面再讲)

 至此,我们证明了 ——

每次我们打开文件虽然打开的是 3,但是可以像 3,4,5,6…… 去写,默认系统就会帮我们打开:

0 (标准输入, stdin) ,1 (标准输出, stdout),2 (错误输出, stderr) 

下面我们要做的是,验证一下 0,1,2 和 stdin, stdout 和 stderr 的对应关系。

根据我们目前的分析,\textrm{FILE} 本来就是一个结构体, 因为系统只认 \textrm{fd}

所以 C 语言本身调用的一定是系统结构,这就直接决定了不管怎么封装,底层必须有 \textrm{fd}

💬 代码验证:下面我们就来证明 \textrm{fd} 的存在,证明 stdin, stdout 和 stderr 的对应关系

int main(void)
{
    printf("stdin: %d\n", stdin->_fileno);
    printf("stdout: %d\n", stdout->_fileno);
    printf("stderr: %d\n", stderr->_fileno);
}

🚩 运行结果如下:

" 这……就是透过现象看本质!"

函数接口的对应:fopen / fclose / fread / fwrite    open / close / read / write

数据类型的对应:(FILE*FILE) → \textrm{fd}

🔺 结论:我们用的 C 语言接口一定封装了系统调用接口!

  这个 0, 1, 2, 3, 4, 5……,是不是有点像数组下标?

" 咳咳……不是有点像,它就是数组下标!"

刚才返回 \textrm{fd} 的,用的都是系统接口,是操作系统提供的返回值。

 既然操作系统能给你,那说明操作系统内部是有的。

文件描述符的值为什么是 1,2,3,4,5... ?为了理解这个问题,我们需要做大量的铺垫!

0x01 文件描述符的底层理解

💭 逻辑推导:进程:内存文件的关系 → 内存 → 被打开的文件实在内存里面的

一个进程可以打开多个文件,所以在内核中,进程与打开的文件之比为:

1:n

所以系统在运行中,有可能会存在大量的被打开的文件 → OS 要对这些被打开的文件进行管理!

OS 如何管理这些被打开的文件呢?还是我们老生常谈的那句话:

先描述,再组织!

所以对我们来说,一个文件被打开不要片面的认为只是对文件内容动动手脚!

它还要 在内核中创建被打开文件的内核数据结构 —— 先描述

struct file {
    // 包含了你想看到的文件的所有大部分 内容 + 属性
    
    struct file* next;
    struct file* prev;
};

* 注:上面的代码是便于理解的,可不是内核真正的代码,真的可远比这复杂得多!

如果你在内核中打开了多个的文件,那么系统会在内核中为文件创建一个 struct file 结构。

可以通过 next prev 将其前后关联起来(内核的链表结构有它自己的设计,这里我们不关注)

既然你打开了一个文件,就会创建一个 struct file,那么你打开多个文件,

系统中必然会存在大量的 struct file,并且该结构我们用链表的形式链接起来:

 如此一来,对被打开的文件的管理,就转化成为了对链表的增删改查!

"这一幕怎么有些似曾相识?我们之前讲进程好像就是这么讲的!task_struct!"

进程与打开的文件之比为 1:n,进程能打开这么多文件,那么:

进程如何和打开的文件建立映射关系?打开的文件哪一个属于我的进程呢?

在内核中,task_struct 在自己的数据结构中包含了一个 struct files_struct *files (结构体指针):

struct files_struct *files;

而我们刚才提到的 "数组" 就在这个 file_struct 里面,该数组是在该结构体内部的一个数组。

struct file* fd_array[];

该数组类型为 struct file* 是一个 指针数组,里面存放的都是指向 struct file 的指针!

" 指向 struct file 的指针!是不是恍然大悟?这不就是文件的 stuct file 结构么?没错!"

数组元素映射到各个被打开的文件,直接指向对应的文件结构,若没有指向就设为 NULL

 此时,我们就建立起了 "进程" 和 "文件" 之间映射关系的桥梁。

🔍 看图理解:在内核中实现的映射关系

 如此一来,进程想访问某一个文件,只需要知道该文件在这张映射表中的数组下标。

上面这些就是在内核中去实现的映射关系了!这个下标 0,1,2,3,4 就是对应的文件描述符 \textrm{fd} !

我们调用的 open / read / write / close 接口都需要 \textrm{fd}

" 可以理解为买彩票,由于关系复杂就不给大家讲故事了,自行理解"

 选号:当我们 open 打开一个新的文件时,先创建 struct file,然后在当前的文件描述表中分配一个没有被使用的下标,把 stuct file 结构体的地址填入 struct file* 中,然后通过 open 将对应的 \textrm{fd} 返回给用户,比如 3,此时我们的 \textrm{fd} 变量接收的 open 的返回值就是 3 了。

 兑奖:后续用户再调用 read, write 这样的接口一定传入了对应的 \textrm{fd},找到了特定进程的 files,在根据对应的 \textrm{fd} 索引到指针数组,通过 sturct file* 中存储的 struct file 结构体地址,找到文件对象,之后就可以对相关的操作了。

🔺 总结:其本质是因为它是一个数组下标,系统中使用指针数组的方式,建立进程和文件之间的关系。\textrm{fd} 返回给上层用户,上层用户就可以调用后续接口 (read, write...) 来索引对应的指针数组,找到对应文件,这就是 \textrm{fd} 为什么是 0,1,2... 的原因了!

0x02 理解:Linux 下一切皆文件

我们上面说的 0,1,2 → stdin, stdout, stderr → 键盘, 显示器, 显示器,这些都是硬件啊?

也用你上面讲的 struct file 来标识对应的文件吗?在解答这个问题之前,我们需要讲清楚:

" Linux 下一切皆文件 "

一切皆文件这个话题在之前的章节我们已经提过了,但是当时由于知识点尚未展开,没法讲解。

现在我们到了去讲解这个概念的时侯了,希望大家可以尝试去理解 "Linux 下一切皆文件" 。

 在这之前我们先说个题外话,其实 C 语言也是可以模拟面向对象的!

💬 代码演示:C 中用 struct 模拟面向对象

struct file {
    // 对象的是属性
    // 函数指针
    void *(readp)(struct file* filep, int fd ...);
    void *(writep)(struct file* filep, int fd...);
};

void read(struct file* filep, int fd...) {
    // 逻辑代码
}

void write(struct file* filep, int fd...) {
    // 代码
}

C++ 本身就是从 C 语言衍生出来的,并不是 "万丈高楼平地起" 的。

是大量工程实战后不断积累的产物,所以 C++ 的面向对象实际上在 C 中也能实现。

我们举个例子:我们在计算机中,有各种硬件:键盘、显示器、磁盘、网卡、其他硬件...

对我们现阶段而言,这些设备我们统一称之为 "外设",下面我们来看图。

🔍 看图理解:注意,下图的 "上层" 是刚才演示的 "映射关系图" 

深灰色层:对应的设备和对应的读写方法一定是不一样的。

黑色层:看见的都是 struct file 文件(包含文件属性, 文件方法),OS 内的内存文件系统。

红色箭头:再往上就是进程,如果想指向磁盘,通过 \textrm{fd} 找到对应的 struct file,根据对应的 file 结构调用读写方法,就可以对磁盘进行操作了。如果想指向对应的显示器,通过 fd 找到 struct file……最后调用读写,就可以对显示器操作了…… 以此类推。

虽然指针指向的是差异化的代码,但是在 深灰色层,我们看到的都是 struct file 文件对象!

在这一层我们 以统一的视角看待所有的设备,往上我们就看作 "一切皆文件" !

也就是说:如果想打开一个文件,打开之后把读写方法属性交给 OS,

在内核里给该硬件创建 stuct file,初始化时把对应的函数指针指向具体的设备,

在内核中存在的永远都是 struct file,然后将 struct file 互相之间用链表关联起来。

站在用户的角度看,一个进程看待所有的文件都是以统一的视角看待的,

所以当我们访问一个 file 的时候,这个 file 具体指向底层的哪个文件或设备,

这完全取决于其底层对应的读写方法指向的是什么方法!

 这操作是不是感觉很熟悉!?

多态?C++ 中运行时多态用的虚表和虚函数指针,那不就是函数指针么?

"上层使用同一对象,指针指向不同的对象,最终就可以调用不同的方法"

这令人拍手叫绝的操作,你可以理解为:多态的前身

📚 补充:上面画的图,在往上走,就回到了内核的映射关系了:

 这里的 struct file 指向的硬件设备是谁,就取决于底层的硬件是怎么设计的了。

通过操作系统层做了一层软件封装,达到了这样的效果。

底层叫硬件,而 具体的硬件读写方法是驱动干的,具体的硬件读写是驱动程序要做的,

OS 只管跟外设要求其提供读写方法,最终 OS 在内核中给它们抽象成 struct file

把它们都看作文件,然后通过函数指针指向具体的文件对应的设备,就完成了 "一切皆文件" !

0x03 初识 VFS(虚拟文件系统)

上面说的这种设置一套 struct file 来表示文件的内存文件系统的操作,

我们称之为 \textrm{VFS} (virtual file system) ,即 虚拟文件系统 。 

虚拟文件系统(VFS)是 Linux 内核中非常有用的一个方面,因为它为文件系统提供了一个通用的接口抽象。VFS 在 SCI 和内核所支持的文件系统之间提供了一个交换层。

0x04 回头看问题:fd 的 0,1,2,3... 

至此,我们梳理完了。现在我们再回过头看 fd 的 1,2,3,4... 就能有一个清楚的认识了。

现在我们再我们最开始的问题,想必大家已经做到 "知其然知其所以然" 了!

为什么从 3 开始,而不是从 0 开始?0, 1, 2 去哪了?

💡 stdin,stdout,stderr 和 0,1,2 是对应关系,因为 open 时默认就打开了,这也是为什么我们默认打开一个新的文件,fd 是从 3 开始的而不是 0 开始的真正原因!

"突然茅塞顿开,上一章打印出 fd 是 3 的疑惑终于解决了!"

  0, 1, 2, 3, 4……,是不是有点像数组下标?

💡 不是有点像,它其实上就是数组下标!fd 0,1,2,3,4...  在内核中属于进程和文件的对应关系,是用数组来完成映射的,这些数字就是数组的下标。read, write, close 这些接口都必须用 0,1,2,3,4 来找到底层对应的 struct file 结构,进而访问到底层对应的读写方法 (包括相关的属性,缓冲区等) 。

📌 [ 笔者 ]   王亦优
📃 [ 更新 ]   2023.3.24
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,
              本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

C++reference[EB/OL]. []. http://www.cplusplus.com/reference/.

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/861718.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

跨境商城服务平台搭建与开发(金融服务+税务管理)

随着全球电子商务的快速发展&#xff0c;跨境贸易已经成为一种新的商业趋势。在这个背景下&#xff0c;搭建一个跨境商城服务平台&#xff0c;提供金融服务、税务管理等一系列服务&#xff0c;可以极大地促进跨境贸易的发展。本文将详细阐述跨境商城服务平台搭建与开发的步骤。…

在单元测试中使用Jest模拟VS Code extension API

对VS Code extension进行单元测试时通常会遇到一个问题&#xff0c;代码中所使用的VS Code编辑器的功能都依赖于vscode库&#xff0c;但是我们在单元测试中并没有添加对vscode库的依赖&#xff0c;所以导致运行单元测试时出错。由于vscode库是作为第三方依赖被引入到我们的VS C…

SpringBoot集成Redis及Redis使用方法

目录 应用背景 Redis简介 更新问题 一&#xff1a;环境配置 1.1: 在pom.xml文件中添加依赖 1.2&#xff1a;配置SpringBoot核心配置文件application.properties 二&#xff1a;在Config文件夹中创建RedisConfig配置文件类 2.1&#xff1a;RedisTemplate中的几个角色&am…

2023最新版本Activiti7系列-多实例详解

工作流多实例 1.多实例介绍 多实例活动是为业务流程中的某个步骤定义重复的一种方式。在编程概念中&#xff0c;多实例与 for each 结构相匹配&#xff1a;它允许对给定集合中的每个项目按顺序或并行地执行某个步骤或甚至一个完整的子流程。 多实例是一个有额外属性&#xff0…

【Java并发】如何进行死锁诊断?

文章目录 1.什么是死锁2.死锁怎么产生的3.如何进行死锁诊断&#xff1f;3.1 通过命令查看3.2 jconsole可视化工具3.2 VisualVM&#xff1a;故障处理工具 1.什么是死锁 死锁&#xff08;Deadlock&#xff09;是指两个或多个进程&#xff08;线程&#xff09;在执行过程中&#…

spss什么是描述性分析,以及如何去处理。

描述性分析是数据分析的第一步&#xff0c;是了解和认识数据基本特征和结构的方法&#xff0c;只有在完成了描述性统计分析&#xff0c;充分的了解和认识数据特征后&#xff0c;才能更好地开展后续更复杂的数据分析。因此&#xff0c;描述性分析是开展数据分析过程中最基础且必…

怎么在python里面安装库,如何在python中安装库

大家好&#xff0c;给大家分享一下python外部库安装后放在哪里&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; Python成为最流行的语言之一&#xff0c;除了它的简单易学和语法简单外&#xff0c;还有一个重要的原因是Python有非常强大的第…

PMP认证考试有何变化?该如何备考

截至2023年1月31日&#xff0c;全球有超130万PMP有效持证人士&#xff0c;其中中国有效持证人数已超过了43万人。持有PMP也已成为企业衡量项目经理人专业度的重要指标之一。 PMP考证人数的快速发展&#xff0c;与其考试大纲和知识体系的科学性和实战性密不可分。PMP考纲和教材…

【雕爷学编程】Arduino动手做(201)---行空板硬件控制之LED与按键

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…

数组slice、splice字符串substr、split

一、定义 这篇文章主要对数组操作的两种方法进行介绍和使用&#xff0c;包括&#xff1a;slice、splice。对字符串操作的两种方法进行介绍和使用&#xff0c;包括&#xff1a;substr、split (一)、数组 slice:可以操作的数据类型有&#xff1a;数组字符串 splice:数组 操作数组…

Spring依赖注入、对象装配

文章目录 依赖注入与对象装配依赖注入的常见方式属性注入&#xff08;Property Injection&#xff09;属性注入的优缺点 Setter 注入&#xff08;Setter Injection&#xff09;Setter注入优缺点 构造函数注入&#xff08;Constructor Injection&#xff09;构造函数注入优缺点 …

Unity游戏源码分享-多角色fps射击游戏

Unity游戏源码分享-多角色fps射击游戏 项目地址&#xff1a;https://download.csdn.net/download/Highning0007/88204023

Flutter BottomSheet 三段式拖拽

BottomSheetBehavior 追踪 BottomSheet系统默认实现效果准备要实现的功能点&#xff1a;定义三段式状态&#xff1a;BottomSheetBehavoir阀值定义1. 未达到滚动阀值&#xff0c;恢复状态2. 达到滚动阀值&#xff0c;更新状态 前面倒是有讲过Android原生的BottomSheetBehavior&a…

Camunda 7.x 系列【2】开源工作流引擎框架

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址&#xff1a;https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 前言2. 开源工作流引擎框架2.1 jBPM2.2 Activ…

综合技巧练习 - Packet Tracer 简介

1.7.1&#xff1a;综合技巧练习 - Packet Tracer 简介 拓扑图&#xff1a; 以基本完成的逻辑拓扑为起点。 设备 接口 IP 地址 子网掩码 默认网关 R1-ISP Fa0/0 192.168.254.253 255.255.255.0 不适用 S0/0/0 10.10.10.6 255.255.255.252 R2-Central Fa0/0 17…

DTC服务(0x14 0x19 0x85)

DTC相关的服务有ReadDTCInformation (19) service&#xff0c;ControlDTCSetting (85) service和ReadDTCInformation (19) service ReadDTCInformation (19) service 该服务允许客户端从车辆内任意一台服务器或一组服务器中读取驻留在服务器中的诊断故障代码( DTC )信息的状态…

并发——ThreadPoolExecutor 类简单介绍

文章目录 1 ThreadPoolExecutor 类分析2 推荐使用 ThreadPoolExecutor 构造函数创建线程池 线程池实现类 ThreadPoolExecutor 是 Executor 框架最核心的类。 1 ThreadPoolExecutor 类分析 ThreadPoolExecutor 类中提供的四个构造方法。我们来看最长的那个&#xff0c;其余三个…

P15 电路定理——巧妙-灵性-智慧

1、戴维南定理 2、戴维南定理的证明 对于线性含源的一个结构&#xff0c; 右边接一个支路N&#xff0c;再用电流源替代N 情况一&#xff1a;A没有独立源&#xff0c;那么A可以等价于一个电阻 情况二&#xff1a;A有独立源&#xff0c;例证法&#xff1a; 使用叠加法&#xf…

获取 Android 的 SHA1 值

1、调试版&#xff0c;可以直接在 Android studio 中的 gradle 中查看。也可以用下面方法进行 前提要先确定签名文件所在的路径&#xff1a;调试版默认使用的签名文件是debug.keystore&#xff0c;文件处于 C 盘用户目录下的.android文件夹下。打开命令行工具&#xff0c; 1、…

分析为何科研转化率低

最近这两天&#xff0c;[广西审计:高校1.31亿科研经费成果转化率为0] 话题引发热议。据报道&#xff0c;广西壮族自治区审计厅近日公布的《关于2022年度自治区本级预算执行和其他财政收支的审计工作报告》披露了广西在科教振兴资金审计方面 9 所高校开展科研的相关情况。报告发…