这个题非常简单,解法有很多种,我用的是HashMap记录每个元素出现的次数,只要次数大于数组长度的一半就返回。下面是我的代码:
class Solution {
public int majorityElement(int[] nums) {
int len = nums.length/2;
HashMap<Integer,Integer> map = new HashMap<Integer, Integer>();
for(int i=0;i<nums.length;i++){
int key = nums[i];
if(!map.containsKey(key)){
map.put(key,1);
if(map.get(key) > len) return key;
}else{
map.put(key,map.get(key)+1);
if(map.get(key) > len) return key;
}
}
return -1;
}
}
题解还有一种更牛逼的解法,把数组排序,然后返回数组中间的那个数就行,因为如果这个数出现的次数大于数组长度的一半的话,排完序后数组中间那个数一定是它。
class Solution {
public int majorityElement(int[] nums) {
Arrays.sort(nums);
return nums[nums.length/2];
}
}
还有用分治法的,如果一个数是这个数组的总数,那么把这个数组分成两个子数组后,这个数至少是其中一个数组的众数,然后选出两个众数中真正的众数即可。可以采用递归的方法,不断把数组分成两个子数组,直到子数组的长度为1,合并左右两个数组,然后再不断合并,最后就可以找到整个数组的众数了
class Solution {
private int countInRange(int[] nums, int num, int lo, int hi) {
int count = 0;
for (int i = lo; i <= hi; i++) {
if (nums[i] == num) {
count++;
}
}
return count;
}
private int majorityElementRec(int[] nums, int lo, int hi) {
// base case; the only element in an array of size 1 is the majority
// element.
if (lo == hi) {
return nums[lo];
}
// recurse on left and right halves of this slice.
int mid = (hi - lo) / 2 + lo;
int left = majorityElementRec(nums, lo, mid);
int right = majorityElementRec(nums, mid + 1, hi);
// if the two halves agree on the majority element, return it.
if (left == right) {
return left;
}
// otherwise, count each element and return the "winner".
int leftCount = countInRange(nums, left, lo, hi);
int rightCount = countInRange(nums, right, lo, hi);
return leftCount > rightCount ? left : right;
}
public int majorityElement(int[] nums) {
return majorityElementRec(nums, 0, nums.length - 1);
}
}
还有一种Boyer-Moore 投票算法,他是先选一个候选数,先把他的次数定为0,如果下一个数和他一样次数加一,如果不一样次数减一,如果次数为0,侯选数换成下一个数,最后的侯选数就是众数。
class Solution {
public int majorityElement(int[] nums) {
int count = 0;
Integer candidate = null;
for (int num : nums) {
if (count == 0) {
candidate = num;
}
count += (num == candidate) ? 1 : -1;
}
return candidate;
}
}