opencv基础57-模板匹配cv2.matchTemplate()->(目标检测、图像识别、特征提取)

news2024/11/26 19:40:02

OpenCV 提供了模板匹配(Template Matching)的功能,它允许你在图像中寻找特定模板(小图像)在目标图像中的匹配位置。模板匹配在计算机视觉中用于目标检测、图像识别、特征提取等领域。

以下是 OpenCV 中使用模板匹配的基本步骤:

  1. 加载图像: 首先,加载目标图像和要匹配的模板图像。

  2. 选择匹配方法: 选择适当的匹配方法,例如 cv2.TM_CCOEFF、cv2.TM_CCOEFF_NORMED、cv2.TM_CCORR、cv2.TM_CCORR_NORMED、cv2.TM_SQDIFF 或 cv2.TM_SQDIFF_NORMED。每种方法对应不同的匹配计算方式。

  3. 应用模板匹配: 使用 cv2.matchTemplate() 函数来进行模板匹配,该函数返回匹配结果的矩阵。

  4. 找到最佳匹配位置: 在匹配结果矩阵中,通过分析像素值找到最佳匹配位置,即目标图像中的匹配位置。

模板匹配是指在当前图像 A 内寻找与图像 B 最相似的部分,一般将图像 A 称为输入图像,将图像 B 称为模板图像。模板匹配的操作方法是将模板图像 B 在图像 A 上滑动,遍历所有像素以完成匹配。

例如,在图 15-1 中,希望在图中的大图像“lena”内寻找左上角的“眼睛”图像。此时,大图像“lena”是输入图像,“眼睛”图像是模板图像。查找的方式是,将模板图像在输入图像内从左上角开始滑动,逐个像素遍历整幅输入图像,以查找与其最匹配的部分。

在这里插入图片描述

模板匹配函数说明

在 OpenCV 内,模板匹配是使用函数 cv2.matchTemplate()实现的。该函数的语法格式为:

result = cv2.matchTemplate(image, templ, method[, mask ] )

其中:

  • image 为原始图像,必须是 8 位或者 32 位的浮点型图像。
  • templ 为模板图像。它的尺寸必须小于或等于原始图像,并且与原始图像具有同样的类
    型。
  • method 为匹配方法。该参数通过 TemplateMatchModes 实现,有 6 种可能的值,如表 15-1 所示。

在这里插入图片描述

  • mask 为模板图像掩模。它必须和模板图像 templ 具有相同的类型和大小。通常情况下该值使用默认值即可。当前,该参数仅支持 TM_SQDIFF 和 TM_CCORR_NORMED 两个值。

函数 cv2.matchTemplate()的返回值 result 是由每个位置的比较结果组合所构成的一个结果集,类型是单通道 32 位浮点型。如果输入图像(原始图像)尺寸是 WH,模板的尺寸是 wh,
则返回值的大小为(W-w+1)*(H-h+1)。
在进行模板匹配时,模板在原始图像内遍历。在水平方向上:
I 表示输入图像,T 表示模板,R 表示输出的结果图像,x 和 y 表示位置信息。

  • 遍历的起始坐标是原始图像左数第 1 个像素值(序号从 1 开始)。
  • 最后一次比较是当模板图像位于原始图像的最右侧时,此时其左上角像素点所在的位置是 W-w+1。
    因此,返回值 result 在水平方向上的大小是 W-w+1(水平方向上的比较次数)。

在垂直方向上:

  • 遍历的起始坐标从原始图像顶端的第 1 个像素开始。
  • 最后一次比较是当模板图像位于原始图像的最下端时,此时其左上角像素点所在位置是H-h+1。

所以,返回值 result 在垂直方向上的大小是 H-h+1(垂直方向上的比较次数)。
如果原始图像尺寸是 WH,模板的尺寸是 wh,则返回值的大小为(W-w+1)(H-h+1)。也就是说,模板图像要在输入图像内比较(W-w+1)(H-h+1)次。

太抽象了再看看下面的说明看看能不能好理解一点

例如,在图 15-2 中,左上方的 2×2 小方块是模板图像,右下方的 10×10 图像是输入图像
(原始图像)。在进行模板匹配时:

  1. 首先将模板图像置于输入图像的左上角。
  2. 模板图像在向右移动时,最远只能位于输入图像的最右侧边界处,此时模板图像左上角的像素对应着输入图像的第 9 列(输入图像宽度-模板图像宽度+1 = 10-2+1 = 9)。
  3. 模板图像在向下移动时,最远只能位于输入图像最下端的边界处。此时模板图像左上角的像素对应着输入图像的第 9 行(输入图像高度-模板图像高度+1 = 10-2+1 = 9)。
    根据上述分析可知,比较结果 result 的大小满足(W-w+1)*(H-h+1),在上例中就是(10-2+1)×(10-2+1),即 9×9。也就是说,模板图像要在输入图像内总计比较 9×9 = 81 次,这些比较结果将构成一个 9×9 大小的二维数组。

在这里插入图片描述
这样感觉有点懂了。

这里需要注意的是,函数 cv2.matchTemplate()通过参数 method 来决定使用不同的查找方法。对于不同的查找方法,返回值 result 具有不同的含义。

例如:

  • method 的值为 cv2.TM_SQDIFF 和 cv2.TM_SQDIFF_NORMED 时,result 值为 0 表示匹
    配度最好,值越大,表示匹配度越差。
  • method 的值为 cv2.TM_CCORR、cv2.TM_CCORR_NORMED、cv2.TM_CCOEFF 和
    cv2.TM_CCOEFF_NORMED 时,result 的值越小表示匹配度越差,值越大表示匹配度越好。

从上述分析可以看出,查找方法不同,结果的判定方式也不同。在查找最佳匹配时,首先要确定使用的是何种 method,然后再确定到底是查找最大值,还是查找最小值。

代码示例:使用函数 cv2.matchTemplate()进行模板匹配。

要求参数 method 的值设置为 cv2.TM_SQDIFF,显示函数的返回结果及匹配结果。

先到网上找个图,然后从图中再截取一部分另存为一个图。

在这里插入图片描述

在这里插入图片描述

代码如下:

import cv2

from matplotlib import pyplot as plt

img1 = cv2.imread('toukui.png')
#将图片转换为灰度图
img = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)

template1 = cv2.imread('toukui2.png')

template = cv2.cvtColor(template1,cv2.COLOR_BGR2GRAY)

th, tw = template.shape[::]
rv = cv2.matchTemplate(img,template,cv2.TM_SQDIFF)

minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)
topLeft = minLoc
bottomRight = (topLeft[0] + tw, topLeft[1] + th)
cv2.rectangle(img,topLeft, bottomRight, 255, 2)
plt.subplot(121),plt.imshow(rv,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.show()

运行效果:

在这里插入图片描述
简单的目标检测效果就来了。

多模板匹配

也就是说目标检测时 出现了多个目标,在前面的例子中,我们在输入图像 中搜索其戴头盔,该子图在整个输入图像内仅出现了一次。但是,有些情况下,如果摄像头下面现在站了3个戴头盔的人,这时就需要找出多个匹配结果。而函数 cv2.minMaxLoc()仅仅能够找出最值,无法给出所有匹配区域的位置信息。所以,要想匹配多个结果,使用函数 cv2.minMaxLoc()是无法实现的,需要利用阈值进行处理。

下面分步骤介绍如何获取多模板匹配的结果。

1. 获取匹配位置的集合

函数 where()能够获取模板匹配位置的集合。对于不同的输入,其返回的值是不同的。

  • 当输入(参数)是一维数组时,返回值是一维索引,只有一组索引数组。
  • 当输入是二维数组时,返回的是匹配值的位置索引,因此会有两组索引数组表示返回值的位置。

以下代码查找在一维数组 a 中,数值大于 5 的元素的索引(即该元素所在的位置,数组的索引从 0 开始):

import numpy as np
a=np.array([3,6,8,1,2,88])
b=np.where(a>5)
print(b)

该段代码返回的结果为:

(array([1, 2, 5], dtype=int64),)

说明索引值为 1、2、5 的数组元素,它们的值是大于 5 的


上面介绍的是输入值为一维数组时的情况。

当输入值是二维数组时,函数 where()会返回满足条件的值在二维数组中的索引。

例如,以下代码查找在二维数组 am 中,值大于 5 的元素的索引:

import numpy as np
am=np.array([[3,6,8,77,66],[1,2,88,3,98],[11,2,67,5,2]])
b=np.where(am>5)
print(b)

该段代码返回的结果为:

(array([0, 0, 0, 0, 1, 1, 2, 2], dtype=int64),
array([1, 2, 3, 4, 2, 4, 0, 2], dtype=int64))

上述结果说明,存在二维数组 am,它的值为:

[[ 3 6 8 77 66]
[ 1 2 88 3 98]
[11 2 67 5 2]]

其中,位置[0, 1]、[0, 2]、[0, 3]、[0, 4]、[1, 2]、[1, 4]、[2, 0]、[2, 2]上的元素值大于 5。

综上所述,函数 np.where()可以找出在函数 cv2.matchTemplate()的返回值中,哪些位置上的值是大于阈值 threshold 的。

在具体实现时,可以采用的语句为:

loc = np.where( res >= threshold)

式中:

  • res 是函数 cv2.matchTemplate()进行模板匹配后的返回值。
  • threshold 是预设的阈值
  • loc 是满足“res >= threshold”的像素点的索引集合。例如,在上面的二维数组 am 中,返回的大于 5 的元素索引集合为(array([0, 0, 0, 0, 1, 1, 2, 2], dtype=int64), array([1, 2, 3, 4,2, 4, 0, 2], dtype=int64))。返回值 loc 中的两个元素,分别表示匹配值的行索引和列索引。

2. 循环坐标值

这个没啥看头,知道什么叫循环就行

比如要处理多个值,通常需要用到循环。
例如,有一个列表,其中的值为 71、23、16,希望将这些值逐个输出,可以这样写代码:

value = [71,23,16]
for i in value:
print('value 内的值:', i)

运行上述代码,得到的输出结果为:

value 内的值: 71
value 内的值: 23
value 内的值: 16

因此,在获取匹配值的索引集合后,可以采用如下语句遍历所有匹配的位置,对这些位置做标记:
for i in 匹配位置集合:标记匹配位置。

3. 在循环中使用函数zip()

函数 zip()用可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

例如,以下代码使用函数 zip()将 t 内对应的元素打包成一个个元组,并打印了由这些元组组成的列表:

x = [1,2,3]
y = [4,5,6]
z = [7,8,9]
t = (x,y,z)
print(t)
for i in zip(*t):
 print(i)

上述代码中,语句 print(t)将 t 内的元素输出,结果为:

([1, 2, 3], [4, 5, 6], [7, 8, 9])

循环语句 for i in zip(*t)将 t 内的元素打包成元组后输出,结果为:

(1, 4, 7)
(2, 5, 8)
(3, 6, 9)

因此,如果希望循环遍历由 np.where()返回的模板匹配索引集合,可以采用的语句为:

for i in zip(*模板匹配索引集合):标记处理

例如,对于前面提到的数组 am,使用函数 zip()循环,就可以得到其中大于 5 的元素索引
的集合:

import numpy as np
am=np.array([[3,6,8,77,66],[1,2,88,3,98],[11,2,67,5,2]])
print(am)
b=np.where(am>5)
for i in zip(*b):
 print(i)

上述代码的输出结果为:

[[ 3 6 8 77 66]
[ 1 2 88 3 98]
[11 2 67 5 2]]
(0, 1)
(0, 2)
(0, 3)
(0, 4)
(1, 2)
(1, 4)
(2, 0)
(2, 2)

4. 调整坐标

函数 numpy.where()可以获取满足条件的模板匹配位置集合,然后可以使用函数cv2.rectangle()在上述匹配位置绘制矩形来标注匹配位置
使用函数 numpy.where()在函数 cv2.matchTemplate()的输出值中查找指定值,得到的形式为“(行号,列号)”的位置索引。

但是,函数 cv2.rectangle()中用于指定顶点的参数所使用的是形
式为“(列号,行号)”的位置索引。所以,在使用函数 cv2.rectangle()绘制矩形前,要先将函数numpy.where()得到的位置索引做“行列互换”。可以使用如下语句实现 loc 内行列位置的互换:loc[::-1]
如下语句将 loc 内的两个元素交换位置:

import numpy as np
loc = ([1,2,3,4],[11,12,13,14])
print(loc)
print(loc[::-1])

其中,语句 print(loc)所对应的输出为:

([1, 2, 3, 4], [11, 12, 13, 14])

语句 print(loc[::-1])所对应的输出为:

([11, 12, 13, 14], [1, 2, 3, 4])

5. 标记匹配图像的位置

最后一步就用 函数 cv2.rectangle()可以标记匹配图像的具体位置,分别指定要标记的原始图像、对角顶点、颜色、矩形边线宽度即可。
关于矩形的对角顶点:

  • 其中的一个对角顶点 A 可以通过 for 循环语句从确定的满足条件的“匹配位置集合”内获取。
  • 另外一个对角顶点,可以通过顶点 A 的位置与模板的宽(w)和高(h)进行运算得到。

因此,标记各个匹配位置的语句为:

for i in 匹配位置集合:
 cv2.rectangle(输入图像,i, (i[0] + w, i[1] + h), 255, 2)

代码示例:使用模板匹配方式,标记在输入图像内与模板图像匹配的多个子图像。

代码如下:

import cv2
import numpy as np
img = cv2.imread('lena4.bmp',0)
template = cv2.imread('lena4Temp.bmp',0)
w, h = template.shape[::-1]
res = cv2.matchTemplate(img,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.9
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
  cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h), 255, 1)

cv2.imshow("template",template)
cv2.imshow("result1",img)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果如下:

在这里插入图片描述
可以看到输入图像内多个与模板图像匹配的子图被标记出来

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/858882.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

怎么学习机械学习相关的技术? - 易智编译EaseEditing

学习DOM(文档对象模型)相关技术是成为前端开发者的关键一步,因为DOM是用于操作和控制网页内容的基础。以下是学习DOM相关技术的步骤和方法: 了解基础知识: 首先,了解什么是DOM,它如何表示HTML…

Python小白入门:文件、异常处理和json格式存储数据

这里写自定义目录标题 所用资料 一、从文件中读取数据1.1 读取整个文件1.2 文件路径1.3 逐行读取1.4 创建一个包含文件各行内容的列表1.5 使用文件的内容1.6 包含一百万位的大型文件1.7 圆周率值中包含你的生日吗练习题 二、写入文件2.1 写入空文件2.2 写入多行2.3 附加到文件练…

Mask RCNN网络结构以及整体流程的详细解读

文章目录 1、概述2、Backbone3、RPN网络3.1、anchor的生成3.2、anchor的标注/分配3.3、分类预测和bbox回归3.4、NMS生成最终的anchor 4、ROI Head4.1、ROI Align4.2、cls head和bbox head4.3、mask head 1、概述 Mask RCNN是在Faster RCNN的基础上增加了mask head用于实例分割…

PY32F002A单片机开发板,主频最高24M,Flash 20K,Sram 3K

PY32F002A开发板为PY32F002A芯片提供了一个简易的硬件开发环境。开发板使用 type—c 接口作为供电源。提供包括扩展引脚在内的以及 SWD、Reset、Boot、User button key、Reset key、LED 等外设资源。PY32F002A开发板支持使用ST link,JI link,DAP link进行烧录开发,开…

图的深度优先遍历和广度优先遍历

目录 图的创建和常用方法 深度优先遍历&#xff08;Depth First Search&#xff09; 广度优先遍历&#xff08;Broad First Search&#xff09; 图的创建和常用方法 //无向图 public class Graph {//顶点集合private ArrayList<String> vertexList;//存储对应的邻接…

Spring Security 详解

目录 一、Spring Security简介1.1 概述1.2 历史 二、Spring Security功能三、Spring Security支持的身份认证模式四、SpringBoot项目构建4.1 项目搭建4.2 内存认证4.3 UserDetailsService 处理逻辑4.4 数据库认证4.5 PasswordEncoder4.6 自定义登录页面4.7 会话管理4.8 认证成功…

添加SQLCipher 到项目中

文章目录 一、克隆下载SQLCipher二、手动导入1. 生成sqlite3.c2. 在项目中添加命令3. 添加 Security.framework 三、CocoaPods导入 SQLCipher官方地址 一、克隆下载SQLCipher $ cd ~/Documents/code $ git clone https://github.com/sqlcipher/sqlcipher.git二、手动导入 1.…

Qt5兼容使用之前Qt4接口 intersect接口

1. 问题 项目卡中遇到编译报错&#xff0c; 错误 C2039 “intersect”: 不是“QRect”的成员 。 2. 排查过程 排查到依赖的第三方代码&#xff0c;使用 intersect 接口&#xff0c; 跟踪排查到头文件中使用了***#if QT_DEPRECATED_SINCE(5, 0)*** #if QT_DEPRECATED_SINCE…

大学生创业运营校园跑腿小程序怎么样?

校园跑腿小程序是一种基于移动互联网的服务平台&#xff0c;旨在为大学生提供便捷的跑腿服务。它可以连接大学生用户和需要代办事务的人群&#xff0c;实现多方共赢的局面。接下来&#xff0c;我将从需求背景、市场前景、功能特点等方面进行分析。 首先&#xff0c;校园跑腿小程…

ETLCloud+MaxCompute实现云数据仓库的高效实时同步

MaxCompute介绍 MaxCompute是适用于数据分析场景的企业级SaaS&#xff08;Software as a Service&#xff09;模式云数据仓库&#xff0c;以Serverless架构提供快速、全托管的在线数据仓库服务&#xff0c;消除了传统数据平台在资源扩展性和弹性方面的限制&#xff0c;最小化用…

TransNetR:用于多中心分布外测试的息肉分割的基于transformer的残差网络

TransNetR Transformer-based Residual Network for Polyp Segmentation with Multi-Center Out-of-Distribution Testing 阅读笔记 1. 论文名称 《TransNetR Transformer-based Residual Network for Polyp Segmentation with Multi-Center Out-of-Distribution Testing》 用…

STM32基于CubeIDE和HAL库 基础入门学习笔记:物联网项目开发流程和思路

文章目录&#xff1a; 第一部分&#xff1a;项目开始前的计划与准备 1.项目策划和开发规范 1.1 项目要求文档 1.2 技术实现文档 1.3 开发规范 2.创建项目工程与日志 第二部分&#xff1a;调通硬件电路与驱动程序 第三部分&#xff1a;编写最基础的应用程序 第四部分&…

JAVA毕业设计093—基于Java+Springboot+Vue的招聘系统(源码+数据库)

基于JavaSpringbootVue的招聘系统(源码数据库)093 一、系统介绍 本系统前后端分离 本系统分为管理员、HR、用户三种角色 用户角色包含以下功能&#xff1a; 登录、注册、简历(搜索、投递和收藏)、hr联系、我的关注、我的收藏、我的简历、简历投递管理、面试管理、个人中心…

zabbix5.0安装教程(超详细)实测完美可用

5.0 版本对基础环境的要求有⼤的变化&#xff0c;最⼤的就是对 php 版本的要求&#xff0c;最低要求7.2.0 版本,对 php 扩展组件版本也有要求&#xff0c;详见官网文档 https://www.zabbix.com/documentation/current/manual/installation/requirements 准备好⼀台linux服务器&…

day23-113. 路径总和ii

113. 路径总和ii 力扣题目链接(opens new window) 给定一个二叉树和一个目标和&#xff0c;找到所有从根节点到叶子节点路径总和等于给定目标和的路径。 说明: 叶子节点是指没有子节点的节点。 示例: 给定如下二叉树&#xff0c;以及目标和 sum 22&#xff0c; 思路 利用…

【团队协作开发】IDEA中Git从远程其他分支拉取代码并同步更新到自己的分支中更新不全问题解决

出现这个问题往往是因为没有先拉取远程分支的最新变化到本地导致的&#xff0c;具体操作流程和解决方法如下&#xff1a; 1、首先&#xff0c;先确保本地有一个和远程要拉取分支(比如dev_z)相关联的分支&#xff0c;如果没有&#xff1a;选择远程要拉取的分支&#xff0c;点击C…

postman官网下载安装登录详细教程

目录 一、介绍 二、官网下载 三、安装 四、注册登录postman账号&#xff08;不注册也可以&#xff09; postman注册登录和不注册登录的使用区别 五、关于汉化的说明 一、介绍 简单来说&#xff1a;是一款前后端都用来测试接口的工具。 展开来说&#xff1a;Postman 是一个…

探讨C语言是否仍然满足现代编程需求

在过去的30年里&#xff0c;有人试图通过引入一门新的语言来取代C语言&#xff0c;其中一位被简称为BS的人也持有类似观点。尽管这门新语言在某些方面表现出色&#xff0c;但它并未能完全取代C语言&#xff0c;而是在特定领域发展出自己的优势。此后&#xff0c;又有一家公司决…

在线Word怎么转换成PDF?Word无法转换成PDF文档原因分析

不同的文件格式使用方法是不一样的&#xff0c;而且也需要使用不同的工具才可以打开编辑内容&#xff0c;针对不同的场合用户们难免会用到各种各样的文件格式&#xff0c;要想在不修改内容的前提下提高工作效率&#xff0c;那就需要用到文件格式转换&#xff0c;那么在线Word怎…

苍穹外卖项目解读(四) 微信小程序支付、定时任务、WebSocket

前言 HM新出springboot入门项目《苍穹外卖》&#xff0c;笔者打算写一个系列学习笔记&#xff0c;“苍穹外卖项目解读”&#xff0c;内容主要从HM课程&#xff0c;自己实践&#xff0c;以及踩坑填坑出发&#xff0c;以技术&#xff0c;经验为主&#xff0c;记录学习&#xff0…