文章目录
- 一、反向迭代器与正向迭代器的区别
- 二、适配器模式来实现反向迭代器
- 三、手撕反向迭代器
一、反向迭代器与正向迭代器的区别
反向迭代器与正向迭代器的解引用都是一样的,都是可以直接找到该位置里面存储的值。不同的是他们之间的运算规则不同,反向迭代器的++就相当于正向迭代器的–
按照我们一般的理解,正向迭代器与反向迭代器在list与vector中的实际应该是如下的
对于设计这个正向迭代器与反向迭代器。
对于list我们可能的想法是将原来的正向迭代器给拷贝一份,然后++运算符重载中修改为指向前一个结点,–运算符重载修改为指向后一个结点
对于vector可能是类似于list一样,写一个迭代器类,然后运算符重载去处理。
这样做确实可以,但是显得过于冗余了
二、适配器模式来实现反向迭代器
在库里面其实使用的是适配器来实现反向迭代器的,如下所示,它封装了一个反向迭代器的类,然后传递正向迭代器作为类型。就是我们的反向迭代器了。
也就是说,库里面就是写了一个万能的类,无论是谁的迭代器传过来,都能将之改变为反向迭代器
下面是库里面的vector的迭代器
如下是库里面对于反向迭代器的实现
我们可以着重看一下这个解引用的,我们会发现,它是先–,然后再解引用的,这一点就很奇怪,与我们之前所设想的结构不符合。那么我们再继续深入研究一下begin,end,rbegin,rend这些函数
我们可以主要到,这个rbegin返回的其实是end,rend返回的是begin
也就是说,根据库里面的结构,它的实际图应该是这样的
这里其实就体现了一个镜像对称特性,认为反向迭代器与正向迭代器是具有对称关系的
这样一来就说明了为什么要先减一下,才能去解引用
三、手撕反向迭代器
根据前面的思路我们就可以设计出我们的反向迭代器了
可以看出,这又是一层套娃。将我们原来的普通迭代器给再套娃一层,就可以改变原来迭代器的行为了。
#pragma once
namespace Sim
{
template<class Iterator, class Ref, class Ptr>
struct ReverseIterator
{
Iterator _it;
typedef ReverseIterator<Iterator, Ref, Ptr> Self;
ReverseIterator(Iterator it)
:_it(it)
{}
Ref operator*()
{
Iterator tmp = _it;
return *(--tmp);
}
Ptr operator->()
{
return &(operator*());
}
Self& operator++()
{
--_it;
return *this;
}
Self operator++(int)
{
Iterator tmp(_it);
_it--;
return tmp;
}
Self& operator--()
{
++_it;
return *this;
}
Self& operator--(int)
{
Iterator tmp(_it);
_it++;
return tmp;;
}
bool operator!=(const Self& s) const
{
return _it != s._it;
}
bool operator==(const Self& s) const
{
return _it == s._it;
}
};
}
我们这个反向迭代器是万能的,我们可以应用于其他类中,下面是用list使用这个反向迭代器
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<list>
#include<assert.h>
#include"reverse_iterator.h"
using namespace std;
namespace Sim
{
template<class T>
struct list_node
{
list_node<T>* _next;
list_node<T>* _prev;
T _val;
list_node(const T& val = T())
:_next(nullptr)
,_prev(nullptr)
,_val(val)
{}
};
template<class T, class Ref, class Ptr>
struct __list_iterator
{
typedef list_node<T> Node;
typedef __list_iterator<T, Ref, Ptr> self;
Node* _node;
__list_iterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_val;
}
Ptr operator->()
{
return &_node->_val;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self & it) const
{
return _node != it._node;
}
bool operator==(const self & it) const
{
return _node == it._node;
}
};
template<class T>
class list
{
typedef list_node<T> Node;
public:
typedef __list_iterator<T, T&, T*> iterator;
typedef __list_iterator<T, const T&, const T*> const_iterator;
typedef ReverseIterator<iterator, T&, T*> reverse_iterator;
typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;
iterator begin()
{
return iterator(_head->_next);
}
iterator end()
{
return iterator(_head);
}
const_iterator begin() const
{
return const_iterator(_head->_next);
}
const_iterator end() const
{
return const_iterator(_head);
}
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
void empty_init()
{
_head = new Node;
_head->_next = _head;
_head->_prev = _head;
_size = 0;
}
list()
{
empty_init();
}
list(const list<T>& lt)
{
empty_init();
for (auto& e : lt)
{
push_back(e);
}
}
void swap(list<T>& lt)
{
std::swap(_head, lt._head);
std::swap(_size, lt._size);
}
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
void push_back(const T& val)
{
insert(end(), val);
}
void push_front(const T& val)
{
insert(begin(), val);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
iterator insert(iterator pos, const T& val)
{
Node* newnode = new Node(val);
Node* cur = pos._node;
Node* prev = cur->_prev;
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = cur;
cur->_prev = newnode;
++_size;
return newnode;
}
iterator erase(iterator pos)
{
assert(pos != end());
Node* cur = pos._node;
Node* prev = cur->_prev;
Node* next = cur->_next;
delete cur;
cur = nullptr;
prev->_next = next;
next->_prev = prev;
--_size;
return next;
}
size_t size()
{
return _size;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void clear()
{
iterator it = begin();
while (it != end())
{
it = erase(it);
}
}
private:
Node* _head;
size_t _size;
};
}
下面是vector的代码
#pragma once
#include<iostream>
#include<string.h>
#include<assert.h>
#include<algorithm>
#include"reverse_iterator.h"
using namespace std;
namespace Sim
{
template<class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef ReverseIterator<iterator, T&, T*> reverse_iterator;
typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin() const
{
return _start;
}
const_iterator end() const
{
return _finish;
}
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
vector()
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{}
vector(const vector<T>& v)
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{
_start = new T[v.capacity()];
//memcpy(_start, v._start, sizeof(T) * v.size());
for (size_t i = 0; i < v.size(); i++)
{
_start[i] = v[i];
}
_finish = _start + v.size();
_end_of_storage = _start + v.capacity();
}
//vector(const vector<T>& v)
// :_start(nullptr)
// , _finish(nullptr)
// , _end_of_storage(nullptr)
//{
// reserve(v.capacity());
// for (auto e : v)
// {
// push_back(e);
// }
//}
vector(size_t n, const T& val = T())
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{
resize(n, val);
}
vector(int n, const T& val = T())
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{
resize(n, val);
}
template<class InputIterator>
vector(InputIterator first, InputIterator last)
:_start(nullptr)
, _finish(nullptr)
, _end_of_storage(nullptr)
{
while (first != last)
{
push_back(*first);
first++;
}
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish,v._finish);
std::swap(_end_of_storage,v._end_of_storage);
}
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
~vector()
{
if (_start)
{
delete[] _start;
_start = nullptr;
_finish = nullptr;
_end_of_storage = nullptr;
}
}
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _end_of_storage - _start;
}
void reserve(size_t n)
{
if (n > capacity())
{
iterator tmp = new T[n];
int sz = size();
if (_start)
{
//memcpy(tmp, _start, sizeof(T) * sz);
for (size_t i = 0; i < size(); i++)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tmp;
_finish = _start + sz;
_end_of_storage = _start + n;
}
}
void resize(size_t n, const T& val = T())
{
if (n < size())
{
_finish = _start + n;
}
else
{
reserve(n);
while (_finish != _start + n)
{
*_finish = val;
_finish++;
}
}
}
void push_back(const T& val)
{
if (_finish == _end_of_storage)
{
size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newcapacity);
}
*_finish = val;
_finish++;
}
void pop_back()
{
if (_start)
{
_finish--;
}
//erase(_finish-1);
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos) const
{
assert(pos < size());
return _start[pos];
}
iterator insert(iterator pos, const T& val)
{
assert(pos >= _start && pos <= _finish);
if (_finish == _end_of_storage)
{
int sz = pos - _start;
int newcapacity= capacity() == 0 ? 4 : capacity() * 2;
reserve(newcapacity);
pos = _start + sz;
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *(end);
end--;
}
*pos = val;
_finish++;
return pos;
}
iterator erase(iterator pos)
{
assert(pos >= _start && pos < _finish);
if (_start)
{
iterator end = pos + 1;
while (end != _finish)
{
*(end - 1) = *end;
end++;
}
_finish--;
}
return pos;
}
private:
iterator _start;
iterator _finish;
iterator _end_of_storage;
};
}
除此外,我们可以使用下面的代码进行测试我们上面的代码,结果是符合我们的预期的
#define _CRT_SECURE_NO_WARNINGS 1
#include"list.h"
#include"vector.h"
void Print(const Sim::list<int>& lt)
{
Sim::list<int>::const_reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
}
void test()
{
Sim::list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
Sim::list<int>::reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
Print(lt);
}
void Print(const Sim::vector<int>& v)
{
Sim::vector<int>::const_reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
}
void testvector()
{
Sim::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
Sim::vector<int>::reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
Print(v);
}
int main()
{
//test();
testvector();
return 0;
}
好了,本期内容就到这里了
如果对你有帮助的话,不要忘记点赞加收藏哦!!!