【Matlab】Elman神经网络遗传算法(Elman-GA)函数极值寻优——非线性函数求极值

news2024/11/25 18:37:56

往期博客👉
【Matlab】BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值
【Matlab】GRNN神经网络遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值
【Matlab】RBF神经网络遗传算法(RBF-GA)函数极值寻优——非线性函数求极值
本篇博客将主要介绍Elman神经网络,希望能帮助大家快速入门Elman网络。

1.背景条件

要求:对于未知模型(函数表达式未知)求解极值。
条件:已知模型的一些输入输出数据。

程序的示例是根据用神经网络遗传算法寻优非线性函数 y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 的极值,输入参数有2个,输出参数有1个,易知函数有极小值0,极小值点为(0, 0)。已知的只有一些输入输出数据(用rand函数生成输入,然后代入表达式生成输出):

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end

2.Elman神经网络函数说明

elmannet

Elman神经网络参数设置函数
函数形式:

net = elmannet(layerdelays,hiddenSizes,trainFcn)

layerdelays: 网络层延迟的行向量,可取的值为0或整数,默认值为1:2;
hiddenSizes: 隐含层的大小,是一个行向量,默认值为10;
trainFcn: 训练函数的字符串,默认值为‘trainlm’。

例如:

net=elmannet(1:2,10)

newelm() 也是创建 Elman 神经网络的函数,不过适用于较低版本的 matlab ,我的 matlab 版本为 R2022b,识别不了这个函数。

3.完整代码

data.m

用于生成神经网络拟合的原始数据。

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=input(i,1)^2+input(i,2)^2;
end
output=output';

save data input output

Elman.m

用函数输入输出数据训练Elman神经网络,使训练后的网络能够拟合非线性函数输出,保存训练好的网络用于计算个体适应度值。根据非线性函数方程随机得到该函数的4000组输入输出数据,存储于data中,其中input为函数输入数据,output为函数对应输出数据,从中随机抽取3900组训练数据训练网络,100组测试数据测试网络拟合性能。最后保存训练好的网络。

%% 清空环境变量
clc

tic
%% 训练数据预测数据提取及归一化
%从1到4000间随机排序
k=rand(1,4000);
[m,n]=sort(k);

%划分训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';

[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);

%% Elman网络训练
% 初始化网络结构
net=elmannet(1:2,10); % Elman网络
% elmannet(layerdelays,hiddenSizes,trainFcn)
% layerdelays表示网络层延迟的行向量,可取的值为0或整数,默认值为1:2;
% hiddenSizes为隐含层的大小,是一个行向量,默认值为10;
% trainFcn表示训练函数的字符串,默认值为‘trainlm’。

% 设置网络参数:迭代次数、学习率和目标
net.trainParam.epochs=1000; % 最大迭代次数
net.trainParam.lr=0.0001; % 学习率
net.trainParam.goal=1e-5; % 误差容限,达到此误差就可以停止训练
net.trainParam.max_fail=5; % 最多验证失败次数
view(net)

%网络训练
net=train(net,inputn,outputn);

%% Elman网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
 
%网络预测输出
an=sim(net,inputn_test);
 
%网络输出反归一化
Eloutput=mapminmax('reverse',an,outputps);

%% 结果分析
error=output_test-Eloutput;
errorsum=sum(abs(error))

figure(1);
plot(Eloutput,':og');
hold on
plot(output_test,'-*');
legend('Predictive output','Expected output','fontsize',10);
title('Elman network predictive output','fontsize',12);
xlabel("samples",'fontsize',12);

figure(2);
plot(error,'-*');
title('Elman Neural network prediction error');
xlabel("samples",'fontsize',12);

figure(3);
plot(100*(output_test-Eloutput)./output_test,'-*');
title('Elman Neural network prediction error percentage (%)');
xlabel("samples",'fontsize',12);

toc

save data net inputps outputps

Code.m

编码成染色体。

function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% ret        output: 染色体的编码值
flag=0;
while flag==0
    pick=rand(1,length(lenchrom));
    ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
    flag=test(lenchrom,bound,ret);     %检验染色体的可行性
end

fun.m

把训练好的Elman神经网络预测输出作为个体适应度值。

function fitness = fun(x)
% 函数功能:计算该个体对应适应度值
% x           input     个体
% fitness     output    个体适应度值

%
load data net inputps outputps

%数据归一化
x=x';
inputn_test=mapminmax('apply',x,inputps);
 
%网络预测输出
an=sim(net,inputn_test);
 
%网络输出反归一化
fitness=mapminmax('reverse',an,outputps);

对于求极小值的函数,适应度可以设为Elman网络预测结果,如果需要求极大值,可以对适应度取反。

Select.m

选择操作采用轮盘赌法从种群中选择适应度好的个体组成新种群。

function ret=select(individuals,sizepop)
% 本函数对每一代种群中的染色体进行选择,以进行后面的交叉和变异
% individuals input  : 种群信息
% sizepop     input  : 种群规模
% ret         output : 经过选择后的种群

fitness1=1./individuals.fitness;
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
index=[]; 
for i=1:sizepop   %转sizepop次轮盘
    pick=rand;
    while pick==0    
        pick=rand;        
    end
    for i=1:sizepop    
        pick=pick-sumf(i);        
        if pick<0        
            index=[index i];            
            break;  %寻找落入的区间,此次转轮盘选中了染色体i,注意:在转sizepop次轮盘的过程中,有可能会重复选择某些染色体
        end
    end
end
individuals.chrom=individuals.chrom(index,:);
individuals.fitness=individuals.fitness(index);
ret=individuals;

Cross.m

交叉操作从种群中选择两个个体,按一定概率交叉得到新个体。

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
 for i=1:sizepop  %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
     % 随机选择两个染色体进行交叉
     pick=rand(1,2);
     while prod(pick)==0
         pick=rand(1,2);
     end
     index=ceil(pick.*sizepop);
     % 交叉概率决定是否进行交叉
     pick=rand;
     while pick==0
         pick=rand;
     end
     if pick>pcross
         continue;
     end
     flag=0;
     while flag==0
         % 随机选择交叉位
         pick=rand;
         while pick==0
             pick=rand;
         end
         pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
         pick=rand; %交叉开始
         v1=chrom(index(1),pos);
         v2=chrom(index(2),pos);
         chrom(index(1),pos)=pick*v2+(1-pick)*v1;
         chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
         flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
         flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
         if   flag1*flag2==0
             flag=0;
         else flag=1;
         end    %如果两个染色体不是都可行,则重新交叉
     end
 end
ret=chrom;

test.m

检验染色体的可行性。

function flag=test(lenchrom,bound,code)
% lenchrom   input : 染色体长度
% bound      input : 变量的取值范围
% code       output: 染色体的编码值

x=code; %先解码
flag=1;
if (x(1)<bound(1,1))&&(x(2)<bound(2,1))&&(x(1)>bound(1,2))&&(x(2)>bound(2,2))
    flag=0;
end

Mutation.m

变异操作从种群中随机选择一个个体,按一定概率变异得到新个体。

function ret=Mutation(pmutation,lenchrom,chrom,sizepop,pop,bound)
% 本函数完成变异操作
% pcorss                input  : 变异概率
% lenchrom              input  : 染色体长度
% chrom     input  : 染色体群
% sizepop               input  : 种群规模
% opts                  input  : 变异方法的选择
% pop                   input  : 当前种群的进化代数和最大的进化代数信息
% ret                   output : 变异后的染色体
for i=1:sizepop   %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
    %但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
    % 随机选择一个染色体进行变异
    pick=rand;
    while pick==0
        pick=rand;
    end
    index=ceil(pick*sizepop);
    % 变异概率决定该轮循环是否进行变异
    pick=rand;
    if pick>pmutation
        continue;
    end
    flag=0;
    while flag==0
        % 变异位置
        pick=rand;
        while pick==0      
            pick=rand;
        end
        pos=ceil(pick*sum(lenchrom));  %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
        v=chrom(i,pos);        
        v1=v-bound(pos,1);        
        v2=bound(pos,2)-v;        
        pick=rand; %变异开始        
        if pick>0.5
            delta=v2*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v+delta;
        else
            delta=v1*(1-pick^((1-pop(1)/pop(2))^2));
            chrom(i,pos)=v-delta;
        end   %变异结束
        flag=test(lenchrom,bound,chrom(i,:));     %检验染色体的可行性
    end
end
ret=chrom;

Genetic.m

%% 清空环境变量
clc
% clear

%% 初始化遗传算法参数
%初始化参数
maxgen=100;                         %进化代数,即迭代次数
sizepop=20;                        %种群规模
pcross=[0.4];                       %交叉概率选择,0和1之间
pmutation=[0.2];                    %变异概率选择,0和1之间

lenchrom=[1 1];          %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5];  %数据范围

individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]);  %将种群信息定义为一个结构体
avgfitness=[];                      %每一代种群的平均适应度
bestfitness=[];                     %每一代种群的最佳适应度
bestchrom=[];                       %适应度最好的染色体

%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
    %随机产生一个种群
    individuals.chrom(i,:)=Code(lenchrom,bound);   
    x=individuals.chrom(i,:);
    %计算适应度
    individuals.fitness(i)=fun(x);   %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:);  %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness]; 

%% 迭代寻优
% 进化开始
for i=1:maxgen
    i
    % 选择
    individuals=Select(individuals,sizepop); 
    avgfitness=sum(individuals.fitness)/sizepop;
    % 交叉
    individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
    % 变异
    individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
    
    % 计算适应度 
    for j=1:sizepop
        x=individuals.chrom(j,:); %解码
        individuals.fitness(j)=fun(x);   
    end
    
  %找到最小和最大适应度的染色体及它们在种群中的位置
    [newbestfitness,newbestindex]=min(individuals.fitness);
    [worestfitness,worestindex]=max(individuals.fitness);
    % 代替上一次进化中最好的染色体
    if bestfitness>newbestfitness
        bestfitness=newbestfitness;
        bestchrom=individuals.chrom(newbestindex,:);
    end
    individuals.chrom(worestindex,:)=bestchrom;
    individuals.fitness(worestindex)=bestfitness;
    
    avgfitness=sum(individuals.fitness)/sizepop;
    
    trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束

%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
disp('适应度                   变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);

4.代码使用说明

上述代码运行顺序

data.m 生成数据(如果已有 input output 数据可跳过),
Elman.m 进行Elman神经网络训练及函数拟合,
Genetic.m(主函数)利用遗传算法求极值。

求最大值的方法

上述代码用于求解最小值,对于求解最大值的需求,可以在适应度函数里面,对适应度计算结果求反,把求解最大值的问题转化为求解最小值的问题。

例如:对于非线性函数 y = − ( x 1 2 + x 2 2 ) + 4 y = -(x_1^2+x_2^2)+4 y=(x12+x22)+4

for i=1:4000
    input(i,:)=10*rand(1,2)-5;
    output(i)=-(input(i,1)^2+input(i,2)^2)+4;
end

求最大值时,需要在 fun.m 里面,修改最后一行代码:

fitness=-mapminmax('reverse',an,outputps);

注意:每次运行结果不尽相同。

5.代码运行结果

y = x 1 2 + x 2 2 y = x_1^2+x_2^2 y=x12+x22 求极小值

Elman神经网络拟合

运行Elman.m之后:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

输出:

errorsum =

   64.6588

历时 4.034772 秒。

注意:每次运行结果不尽相同。

遗传算法寻优

运行主函数 Genetic.m之后:

在这里插入图片描述

输出:

...
i =

   100

适应度                   变量
   -0.8407    0.6137   -0.0228

历时 20.067215 秒。

最终结果最优个体为(0.6137,-0.0228),适应度为 -0.8407。

注意:每次运行结果不尽相同。

参考

《MATLAB神经网络30个案例分析》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/849488.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring Boot】Spring Boot项目的创建和文件配置

目录 一、为什么要学Spring Boot 1、Spring Boot的优点 二、创建Spring Boot项目 1、创建项目之前的准备工作 2、创建Spring Boot项目 3、项目目录的介绍 4、安装Spring Boot快速添加依赖的插件 5、在项目中写一个helloworld 三、Spring Boot的配置文件 1、配置文件的…

opencv基础48-绘制图像轮廓并切割示例-cv2.drawContours()

绘制图像轮廓&#xff1a;drawContours函数 在 OpenCV 中&#xff0c;可以使用函数 cv2.drawContours()绘制图像轮廓。该函数的语法格式是&#xff1a; imagecv2.drawContours( image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]…

mousedown拖拽功能(vue3+ts)

因为项目有rem适配&#xff0c;使用第三方插件无法处理适配问题&#xff0c;所有只能自己写拖拽功能了 拖拽一般都会想到按下&#xff0c;移动&#xff0c;放开&#xff0c;但是本人亲测&#xff0c;就在div绑定一个按下事件就行了&#xff08;在事件里面写另外两个事件&#x…

前端架构师的具体职责范围(合集)

前端架构师的具体职责范围1 职责&#xff1a; 1、前端技术选型、架构搭建、制定前端开发规范&#xff0c;并编制相关文档 2、负责搭建前端框架、通用组件方案制定、性能优化相关工作; 3、维护和升级本地开发环境&#xff0c;提高开发效率&#xff0c;提升开发质量; 4、推动…

【深度学习注意力机制系列】—— ECSKNet注意力机制(附pytorch实现)

SKNet&#xff08;Selective Kernel Network&#xff09;是一种用于图像分类和目标检测等任务的深度神经网络架构&#xff0c;其核心创新是引入了选择性的多尺度卷积核&#xff08;Selective Kernel&#xff09;以及一种新颖的注意力机制&#xff0c;从而在不增加网络复杂性的情…

2.安装Docker-ce

一、删除之前安装的docker(若之前未安装过&#xff0c;此步骤省略…) 进入centos根目录执行以下命令&#xff08;\ 是linux系统种命令换行符&#xff0c;如果命令过长&#xff0c;可以用\来换行&#xff09; yum remove docker \ docker-client \ docker-client-latest \ doc…

BL302嵌入式ARM控制器进行SQLite3数据库操作的实例演示

本文主要讲述了在钡铼技术BL302嵌入式arm控制器上运行 SQLite3 数据库的命令示例。SQLite3 是一个轻型的嵌入式数据库&#xff0c;不需要安装数据库服务器进程&#xff0c;占用资源低且处理速度快。 首先&#xff0c;需要将对应版本的 SQLite3 文件复制到设备的 /usr/ 目录下&…

MyCat管理及监控——zookeeper及MyCat-web安装

1.MyCat管理 2.MyCat-eye 3.zookeeper安装 第一步&#xff1a;解压 第二部&#xff1a; 切换目录&#xff0c;创建data文件夹 第三步&#xff1a;修改zookeeper配置文件 这样zookeeper安装及配置就完成了 4.MyCat-web安装 注意mycat-web要与zookeeper关联&#xff0c;…

单元测试到底是什么?应该怎么做?

一、什么是单元测试&#xff1f; 单元测试&#xff08;unit testing&#xff09;&#xff0c;是指对软件中的最小可测试单元进行检查和验证。至于“单元”的大小或范围&#xff0c;并没有一个明确的标准&#xff0c;“单元”可以是一个函数、方法、类、功能模块或者子系统。单…

Kafka3.0.0版本——Broker(上下线)示例

目录 一、Broker&#xff08;上下线&#xff09;示例1.1、三台服务器信息1.2、先启动zookeeper集群&#xff0c;再启动kafka集群1.3、zookeeper客户端工具prettyZoo查看brokers中ids1.4、停止某一台kafka服务&#xff0c;再次查看brokers中ids1.5、重新启动停止的kafka服务&…

笔记——听听前辈们的教学评一体化

精选课程内容 强而有力的知识 做中学&#xff0c;用中学&#xff0c;创中学。 这个技术很难做 关于支架的新理解 有价值 有意义 和 趣味性 权衡&#xff0c;不能为了趣味性舍弃价值 举例说明文 被教成了文学作品 导致所教所学 悄然发生了偏移。 所以教学评如何一直&#xff…

使用Beautiful Soup等三种方式定制Jmeter测试脚本

目录 背景介绍 实现思路 把脚本数据读出&#xff0c;使用正则表达式&#xff08;re库&#xff09;匹配关键数据进行修改 把脚本数据读出&#xff0c;使用BeautifulSoup的xml解析功能解析后修改 通过Beautiful Soup Beautiful Soup 具体实现 使用string.Template字符替换…

Jupyter Notebook 遇上 NebulaGraph,可视化探索图数据库

在之前的《手把手教你用 NebulaGraph AI 全家桶跑图算法》中&#xff0c;除了介绍了 ngai 这个小工具之外&#xff0c;还提到了一件事有了 Jupyter Notebook 插件: https://github.com/wey-gu/ipython-ngql&#xff0c;可以更便捷地操作 NebulaGraph。 本文就手把手教你咋在 J…

BpBinder与PPBinder调用过程——Android开发Binder IPC通信技术

在Android系统中&#xff0c;进程间通信&#xff08;IPC&#xff09;是一个非常重要的话题。Android系统通过Binder IPC机制实现进程间通信&#xff0c;而Binder IPC通信技术则是Android系统中最为重要的进程间通信技术之一。本文将介绍Binder IPC通信技术的原理&#xff0c;并…

实测有效Window10系统解决文件名过长无法删除或移动问题

问题&#xff1a;window10家庭版&#xff0c;文件名字太长无法对其进行操作 如图 PS&#xff1a;什么注册表方法&#xff0c;压缩方法都没效果 解决&#xff1a; 打开 注册编辑器 进入路径 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem 修改 LongP…

Jenkins 修改默认管理员帐号

1、新增一个新的超级管理员用户&#xff0c;并验证能正常登录 2、进入 Jenkins 用户管理目录&#xff1a; /data/software/jenkins/users 3、修改超级管理文件夹的名称为其他名称&#xff0c;如&#xff1a;mv admin_*** ifadm_*** 4、重启Jenkins容器

snowboy+sherpa-onnx+Rasa+Coqui实现语音音箱【语音助手】

背景 本系列主要目标初步完成一款智能音箱的基础功能&#xff0c;包括语音唤醒、语音识别(语音转文字)、处理用户请求&#xff08;比如查天气等&#xff0c;主要通过rasa自己定义意图实现&#xff09;、语音合成(文字转语音)功能。 coqui主要在项目中完成接收rasa响应的内容&…

Postgresql源码(111)dms框架进程信号发送与处理流程

信号处理整体流程 信号从bgworker发出后&#xff0c;主进程将ParallelMessagePending置为true&#xff0c;下次CHECK_FOR_INTERRUPTS()时&#xff0c;会进入信号处理逻辑中&#xff1a;HandleParallelMessages。进入信号处理逻辑后&#xff0c;首先遍历所有现存的ParallelCont…

护网专题简单介绍

护网专题简单介绍 一、护网红蓝队介绍1.1、网络安全大事件1.2、护网行动由来1.3、护网行动中的角色二、红队介绍2.1、红队所需技能2.2、红队攻击流程 三、蓝队介绍3.1、蓝队所需技能3.2、蓝队防守四阶段3.3、蓝队前期准备 四、常见安全厂商介绍4.1、常见安全厂商 五、常见安全产…

Softing工业获得自动化产品安全开发流程认证

Softing工业获得了TV Sd颁发的IEC 62443-4-1产品安全开发流程认证。 &#xff08;IEC 62443-4-1认证确保网络安全&#xff09; 截至2023年6月&#xff0c;位于德国哈尔和纽伦堡的工厂以及罗马尼亚克卢日的Softing工业研发部门已获得IEC 62443-4-1:2018标准的认证。该认证流程由…