数据结构之时间复杂度-空间复杂度

news2024/11/26 2:37:43

大家好,我是深鱼~

目录

1.数据结构前言

1.1什么是数据结构

1.2什么是算法

1.3数据结构和算法的重要性

1.4如何学好数据结构和算法

2.算法的效率

3.时间复杂度

3.1时间复杂度的概念

3.2大O的渐进表示法

【实例1】:双重循环的时间复杂度:O(N)

【实例2】:双重循环的时间复杂度:O(N+M)

【实例3】:常数循环的时间复杂度:O(1)

【实例4】:strchr的时间复杂度:O(N)

【实例5】:冒泡排序的时间复杂度:O(N^2)

【实例6】:二分查找的时间复杂度:O(log2N)

【实例7】:阶乘递归的时间复杂度:O(N)

【实例8】:斐波那契递归的时间复杂度:O(2^N)

 4.空间复杂度

【实例1】:冒泡排序的空间复杂度:O(1)

【实例2】:斐波那契递归的空间复杂度:O(N)

【实例3】:函数阶乘递归的空间复杂度:O(N)

 【拓展】递归版斐波那契数列的空间复杂度:O(N)


1.数据结构前言

1.1什么是数据结构

实现一些项目,需要在内存中将数据存储起来,数据结构就是计算机存储、组织数据的方式。指相互之间存在一种或多种特定关系的数据元素的集合。eg:数组,链表,树...

1.2什么是算法

算法简单来说就是一系列的计算步骤,用来将输入数据转化为输出结果的。常见的算法有:排序,查找,查重,推荐算法...

1.3数据结构和算法的重要性

在校招的笔试中会有很多有关数据结构和算法的题

可以看看链接,在未来工作中:

数据结构和算法对一个程序员来说的重要性

1.4如何学好数据结构和算法

<1>多敲代码

<2>注重画图思考

2.算法的效率

算法的效率看两点,第一点看时间效率,也就是时间复杂度,第二点看空间效率,也就是空间复杂度,但是随着计算机行业的发展,计算机的存储容量已经达到了很高的程度,所以如今我们不用太关注一个算法的空间复杂度

3.时间复杂度

3.1时间复杂度的概念

算法的时间复杂度是数学里面一个带有未知数的函数表达式,算法的复杂度不是看这个算法的运行时间,因为环境不同,具体的运行时间就不一样,eg:10年前2核cpu、2g内存的机器和今天8核cpu、8g内存的机器,运行的时间就不一样。算法中的基本操作的执行次数,为算法的时间复杂度

3.2大O的渐进表示法

请计算一下Func1基本操作执行了多少次?

void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
 for (int j = 0; j < N ; ++ j)
 {
 ++count;
 }
}
for (int k = 0; k < 2 * N ; ++ k)
{
 ++count;
}
int M = 10;
while (M--)
{
 ++count;
}
printf("%d\n", count);
}

Func1 执行的基本操作次数 :F(N)=N*N+2*N+10

当N = 10        F(N) = 130

当N = 100      F(N) = 10210

当N = 1000   F(N) = 1002010

N越大,后两项对结果的影响越小,所以实际计算时间复杂度时,我们只需要大概执行次数,那么这里我们使用大O的渐进表示法(估算),即时间复杂度:O(N^2)

大O渐进表示法:

(1)用常数1取代运行时间中的所有加法常数

(2)在修改后的运行次数函数中,只保留最高阶项

(3)如果最高阶存在且不是1,则取除与这个项目相乘的常数

【实例1】:双重循环的时间复杂度:O(N)

本来应该是2*N,根据大O渐进表示法(3)简化为O(N)

// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

【实例2】:双重循环的时间复杂度:O(N+M)

(如果前提:M>>N,那么时间复杂度就是O(M);

                      N>>M,那么时间复杂度就是O(N);

                      M和N差不多,那么时间复杂度O(M)或O(N)都可以)

一般情况下时间复杂度计算时未知数都是用的N,但是也可以使用M,K等等其他的

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

【实例3】:常数循环的时间复杂度:O(1)

本来是100,根据大O渐进表示法(1)简化为O(1)

O(1)不是代表算法运行一次,而是常数次

// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

【实例4】:strchr的时间复杂度:O(N)

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

strchr函数的逻辑实际就是下面这个

while(*str)

{

     if(*str==character)

            return str;

     else

           ++str;

}

 以hello world这个字符串为例:

假设查找的是h:      1 最好情况:任意输入规模的最小运行次数(下界)

假设查找的是w:     N/2 平均情况:任意输入规模的期望运行次数(大概就是最好最坏相加/2)

假设查找的是d:       N 最坏情况:任意输入规模的最大运行次数(上界)

当一个算法随着输入的不同,时间复杂度不同,时间复杂度做悲观预期,看最坏的情况(即这个例子的时间复杂度是O(N))

【实例5】:冒泡排序的时间复杂度:O(N^2)

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
} 
}

时间复杂度:N-1,N-2,N-3...1   精确值也就是N*(N-1)/2,那么大O的渐变表示法就是O(N^2)

算时间复杂度不能只看几层循环,而要去看他的思想

【实例6】:二分查找的时间复杂度:O(log2N)

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}

最好的情况:O(1)

最坏的情况:O(log2N)

为什么是O(log2N)呢?

【画图理解】:假设我们要查找X次,一个数组的大小是N,每一次二分查找如果没有找到,N就除以2,考虑最坏的结果,那么直到N一直除到只剩1为止就结束了

N/2/2/2/2...=1

2^X=N

X=log2N

 可见二分查找算法是一个非常牛逼的算法

N个数中查找                大概查找次数

1000                              10

100W                             20

10亿                              30

但是这个算法的前提是数组有序

【实例7】:阶乘递归的时间复杂度:O(N)

递归算法时间复杂度:递归次数*每次递归调用的次数

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{
return N < 2 ? N : Factorial(N-1)*N;
}

Fac(N)   Fac(N-1)  ... Fac(1)

【实例8】:斐波那契递归的时间复杂度:O(2^N)

// 计算斐波那契递归Fibonacci的时间复杂度?
long long Fibonacci(size_t N)
{
return N < 2 ? N : Fibonacci(N-1)+Fibonacci(N-2);
}

【画图理解】:理解递归的逻辑思想,每一次递归都会调用小的两个递归,最后右边的递归调用会先结束,那么递归的次数就是等比数列的和减去右下角因提前结束而缺少的次数

Fib(N)=2^0+2^1+2^2+...+2^n-X

此处的每次递归调用的次数是个常数,就相当于没*

那么大O渐进表示法也就是O(2^N)

可见斐波那契数列的递归写法完全是一个没有实际用途的算法,因为太慢了

 4.空间复杂度

空间复杂度也是一个数学表达式,是一个算法在运行过程中的临时额外占用存储空大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个也没有太大的意义,所以空间复杂度算的是变量的个数

空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

【注意】:函数运行时所需要的栈空间(存储参数,局部变量,一些存储器信息等等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时申请额外空间来确定

【实例1】:冒泡排序的空间复杂度:O(1)

冒泡排序中有三个变量:exchang,end,i,那么根据大O渐进表示法为O(1)

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

【实例2】:斐波那契递归的空间复杂度:O(N)

N个数的数组,动态开辟了N+1个空间,简化过后空间复杂度为O(N)

这个函数返回的是斐波那契数列的前n项的数组,而不是一个数

那个函数的时间复杂度为O(N),比递归的O(2^N)简化了很多

// 计算Fibonacci的空间复杂度?
//返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray =
(long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
}
return fibArray ;
}

【实例3】:函数阶乘递归的空间复杂度:O(N)

// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
return N < 2 ? N : Factorial(N-1)*N;
}

【画图理解】:递归函数调用了N次,开辟了N个栈帧,每个栈帧使用了常数的个空间,所以空间复杂度为O(N) (只要看递归的深度

 【拓展】递归版斐波那契数列的空间复杂度:O(N)

// 计算斐波那契递归Fibonacci的空间复杂度?
long long Fibonacci(size_t N)
{
return N < 2 ? N : Fibonacci(N-1)+Fibonacci(N-2);
}

【画图理解】: 本函数调用空间的顺序是Fbi(N),Fbi(N-1)...Fbi(1),也就是最左边的一个枝干,然后这些函数的空间销毁,继续下一个枝干,这样函数递归的深度一直都是N,而不会是2^N

空间是可以重复利用,不累计的

时间是一去不复返,累积的

这次数据结构之时间和空间复杂度的内容就到此啦,有什么问题欢迎评论区或者私信交流,觉得笔者写的还可以,或者自己有些许收获的,麻烦铁汁们动动小手,给俺来个一键三连,万分感谢 ! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/848110.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uView日历控件(u-calendar)优化

1 问题 u-calendar日历控件存在的问题&#xff1a; 不能设置默认选中值&#xff0c;打开弹窗选择起始日期&#xff0c;然后点击取消按钮或蒙版关闭弹窗时&#xff0c;日历弹窗中的选中值发生改变&#xff08;再次打开日历弹窗时&#xff0c;就可以看到选中值的错误&#xff09…

IMV8.0

一、背景内容 经历了多个版本&#xff0c;基础内容在前面&#xff0c;可以使用之前的基础环境&#xff1a; v1&#xff1a; https://blog.csdn.net/wtt234/article/details/132139454 v2&#xff1a; https://blog.csdn.net/wtt234/article/details/132144907 v3&#xff1a; h…

选择软件检测机构时的注意事项,获取软件测试报告的费用为多少?

随着信息科技的发展&#xff0c;我们的生活和工作也越来越离不开软件产品的使用。软件企业要想在行业崭露头角&#xff0c;软件质量是重中之重。因此很多软件企业为了更好的保障软件质量&#xff0c;会选择将该项工作交由软件检测机构进行。 一、选择软件检测机构时的注意事项…

小尺寸、高效率的88W8997-A0-CBQ2E005-T无线互连芯片,NV24C64DWVLT3G 64Kb EEPROM存储器

88W8997-A0-CBQ2E005-T 是业界尺寸最小、能效最高的MU-MIMO无线互连组合芯片&#xff0c;面向企业级和消费级市场。88W8997是业界首款全面支持Bluetooth 4.2以及未来Bluetooth 5.0全套功能的28nm 2 x 2 802.11ac Wave-2组合芯片。该器件实现了高达867Mbps的峰值数据传送速率&am…

W5100S-EVB-PICO作为TCP Client 进行数据回环测试(五)

前言 上一章我们用W5100S-EVB-PICO开发板通过DNS解析www.baidu.com&#xff08;百度域名&#xff09;成功得到其IP地址&#xff0c;那么本章我们将用我们的开发板作为客户端去连接服务器&#xff0c;并做数据回环测试&#xff1a;收到服务器发送的数据&#xff0c;并回传给服务…

kettle之转换嵌套转换问题

在kettle中如果转换中还调用了转换&#xff0c;需要用过滤记录和中止来判断是否转换内容成功。否则&#xff0c;运行失败了&#xff0c;也会显示成功。这样计算数据会出现问题 如下图所示&#xff1a; 如下图count转换Execution results参数如下: 如下图中用ExecutionNrErro…

vue3获得url上的参数值

1、引入 import { useRoute } from vue-router2、获得const route useRoute() console.log(route.query.number)

IntelliJ IDEA 2021/2022关闭双击shift全局搜索

IDEA左上角 File-->Settings 找到Navigate -->Search Everywhere &#xff0c;右键添加快捷键。 OK --> Apply应用

W6100-EVB-PICO作为TCP Client 进行数据回环测试(五)

前言 上一章我们用W6100-EVB-PICO开发板通过DNS解析www.baidu.com&#xff08;百度域名&#xff09;成功得到其IP地址&#xff0c;那么本章我们将用我们的开发板作为客户端去连接服务器&#xff0c;并做数据回环测试&#xff1a;收到服务器发送的数据&#xff0c;并回传给服务器…

【BI系统】选型常见问题解答二

本文主要总结BI系统选型过程中遇见的常见问题&#xff0c;并针对性做出回答&#xff0c;希望能为即将选型&#xff0c;或正在选型BI系统的企业用户们提供一个快速了解通道。 有针对金蝶云星空的BI方案吗&#xff1f;能起到怎样的作用&#xff1f; 答&#xff1a;奥威BI系统拥…

Windows新版文件资源管理器经常在后台弹出的临时解决方案

禁用组策略自动刷新 运行gpedit.msc找到计算机配置->管理模板->系统->组策略找到 “关闭组策略的后台刷新”启用 参考 https://answers.microsoft.com/en-us/windows/forum/all/windows-11-most-recently-opened-explorer-window/26e097bd-1eba-4462-99bd-61597b5…

网络编程 tcp udp http编程流程 网络基础知识

讲解 网络基础知识网络编程tcp编程流程图示理解bind和accept函数理解监视套接字和链接套接字理解linux和window下的编程实现tcp特点 udp编程流程图示理解udp特点 http编程流程图示理解编程实现-网站服务器 网络基础知识 OSI分层&#xff1a;应用层 表示层 会话层 传输层 网络层…

相关搜索量激增10000%!“芭比周边”产品火爆亚马逊!

据外媒报道&#xff0c;芭比娃娃是今年夏天最热的话题。今年7月份&#xff0c;“芭比娃娃”是亚马逊上搜索最多的词。第二季度&#xff0c;Shopify上的芭比娃娃销量激增了56%。知名玩具制造商美泰&#xff08;Mattel&#xff09;预计&#xff0c;受电影的推动&#xff0c;在未来…

echarts没有数据时也显示y轴刻度

一般如果没有数据&#xff0c;echarts的y轴刻度会隐藏&#xff0c;如果想让y轴刻度显示&#xff0c;需要设置yAxis的 min、max属性&#xff1a; 但是max数据不能写死&#xff0c;如果写死的话&#xff0c;万一实际数据量过大的话&#xff0c;会溢出echarts&#xff0c;所以做个…

找短视频BGM、音效素材,有这6个网站就够了。

很多从事自媒体的朋友不知道去哪里找免费的音效和好听的BGM&#xff0c;作为网站收藏家的我&#xff0c;本期就给大家分享6个视频剪辑必备的音效素材网站&#xff0c;有免费、付费、商用的&#xff0c;大家可以根据自己的需求进行选择&#xff0c;有需要的赶紧收藏起来吧&#…

Linux安装配置nginx+php搭建

Linux安装配置nginxphp搭建 文章目录 Linux安装配置nginxphp搭建1.nginx源码包编译环境和安装相应的依赖1.1 安装编译环境1.2 安装pcre库、zlib库和openssl库 2.安装nginx2.1 在[nginx官网](https://nginx.org/en/download.html)上获取源码包并进行下载2.2 进行解压编译 3.启动…

uboot详解

uboot入口 在PC机上引导程序一般由BIOS开始执行&#xff0c;然后读取硬盘中位于MBR(Main Boot Record&#xff0c;主引导记录)中的Bootloader(例如LILO或GRUB),并进一步引导操作系统的启动。然而在嵌入式系统中通常没有像BIOS那样的固件程序&#xff0c;因此整个系统的加载启动…

mybatis打印sql语句出现多余的limit关键字

1、事情起因 在项目中使用了PageHelper分页插件&#xff0c;由于需求特殊&#xff0c;需要自定义分页&#xff0c;代码编写完成后&#xff0c;事故出现了。 前端传参: {pageNum: 1,pageSize: 10, }已知表中数据10条&#xff0c;但是每次分页查询只有10条数据&#xff0c;排查…

第17章-Spring AOP经典应用场景

文章目录 一、日志处理二、事务控制三、参数校验四、自定义注解五、AOP 方法失效问题1. ApplicationContext2. AopContext3. 注入自身 六、附录1. 示例代码 AOP 提供了一种面向切面操作的扩展机制&#xff0c;通常这些操作是与业务无关的&#xff0c;在实际应用中&#xff0c;可…

5. C++类的封装

一、类的封装 封装的含义&#xff1a; 所有属性都是私有的&#xff0c;外部不能直接访问提供与属性相关的成员函数&#xff0c;间接访问属性 模板代码&#xff1a; #include <iostream> using namespace std;class Clock { private:int hour, minute, second; public…