贝叶斯学习

news2024/10/7 5:12:07

贝叶斯

  • 贝叶斯学习的背景
  • 贝叶斯定理
      • 举例
  • 概览
    • 选择假设— MAP
      • MAP举例
    • 选择假设 — 极大似然 ML
        • ML 举例: 抛硬币问题
    • 极大似然 & 最小二乘
    • Naïve Bayesian Classifier (朴素贝叶斯分类器)
        • 举例1:词义消歧 (Word Sense Disambiguation)
        • 举例 2: 垃圾邮件过滤
      • 从垃圾邮件过滤中学到的经验
    • MDL (最小描述长度,Minimum Description Length)
      • MDL解释(基于信息理论)
      • MDL 和 MAP
      • 对MDL的另一个解释
  • 总结

贝叶斯学习的背景

  • 发现两件事情之间的关系 (因果分析, 先决条件 &结论) • 在我们的日常生活中,医生的疾病诊断可以被认为是一个贝叶斯学习过程
  • A → B A \rightarrow B AB
    • e.g. 肺炎 → \rightarrow 肺癌?
    • 很难直接判断
  • 反向思考
    • e.g. 有多少肺癌患者曾经得过肺炎?
      在这里插入图片描述

贝叶斯定理

在这里插入图片描述

P ( h ∣ D ) = P ( D ∣ h ) P ( h ) P ( D ) P(h|D) = \frac{P(D|h)P(h)}{P(D)} P(hD)=P(D)P(Dh)P(h)

举例: 某项化验测试结果与癌症诊断

  • P(h|D) = h的后验概率(posterior probability)
    P(h|D) : 已知测试结果=‘+’, 那么得了这种癌症的概率
  • P(h) = h的先验概率(prior probability)
    P(h) : 得这种癌症的概率
  • P(D)=D的先验概率
    P(D):测试结果 = ‘+’的概率
  • P(D|h) = 给定 h 情况下 D 的概率
    P(D|h):已知一个人得了这种癌症,那么测试结果为‘+’的概率
  • P(h)
    • 假设: 互相排斥
    • H假设空间: 完全详尽 ∑ P ( h i ) = 1 \sum P(h_i)=1 P(hi)=1
  • P(D)
    • D:所有可能数据中的一个采样集合
    • 与h相互独立
    • 在比较不同假设时可以忽略
  • P(D|h) (似然度 likelihood)
    • log likelihood log(P(D|h)

举例

  • 化验测试结果: +,患有某种癌症?
    P ( c a n c e r ∣ + ) = ? P(cancer|+)=? P(cancer+)=?

我们已知:

  • 正确的阳性样本: 98% (患有该癌症, 测试结果为 +)
  • 正确的阴性样本: 97% (未患该癌症, 测试结果为 -)
  • 在整个人群中,只有0.008 的人患这种癌症
    P ( c a n c e r ∣ + ) = P ( + ∣ c a n c e r ) P ( c a n c e r ) / P ( + ) = 0.98 ∗ 0.008 / ( 0.98 ∗ 0.008 + 0.03 ∗ 0.992 ) = 0.21 P(cancer | + ) = P(+| cancer) P(cancer) / P(+) = 0.98*0.008/(0.98*0.008+0.03*0.992)= 0.21 P(cancer+)=P(+cancer)P(cancer)/P(+)=0.980.008/(0.980.008+0.030.992)=0.21

P ( c a n c e r ) = 0.008 P(cancer) = 0.008 P(cancer)=0.008
P ( ¬ c a n c e r ) = 0.992 P(\neg cancer) = 0.992 P(¬cancer)=0.992

概览

  • 贝叶斯定理
    • 用先验概率来推断后验概率
  • M a x   A   P o s t e r i o r , M A P , h M A P ,极大后验假设 Max\ A\ Posterior, MAP, h_{MAP} ,极大后验假设 Max A Posterior,MAP,hMAP,极大后验假设
  • M a x i m u m L i k e l i h o o d , M L , h M L , 极大似然假设 Maximum Likelihood, ML, h_{ML}, 极大似然假设 MaximumLikelihood,ML,hML,极大似然假设
    • • ML vs. LSE (最小二乘,Least Square Error)
  • Naïve Bayes, NB, 朴素贝叶斯
    • 独立属性/特征假设
    • NB vs. MAP
  • Maximum description length, MDL (最小描述长度)
    • 权衡: 假设复杂度 vs. 假设带来的错误
    • MDL vs. MAP

选择假设— MAP

P ( h ∣ D ) = P ( D ∣ h ) P ( h ) P ( D ) P(h|D) = \frac{P(D|h)P(h)}{P(D)} P(hD)=P(D)P(Dh)P(h)

  • 一般我们需要在给定训练集上最有可能的假设
  • Maximum A Posteriori (MAP): (极大后验假设) hMA
    h M A P = a r g m a x h ∈ H P ( h ∣ D ) P ( h ) = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) P ( D ) = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) \begin{align*} h_{MAP} &= \underset{h \in H}{argmax}P(h|D)P(h) \\ &= \underset{h \in H}{argmax} \frac{P(D|h)P(h)}{P(D)} \\ &= \underset{h \in H}{argmax}P(D|h)P(h) \end{align*} hMAP=hHargmaxP(hD)P(h)=hHargmaxP(D)P(Dh)P(h)=hHargmaxP(Dh)P(h)

MAP举例

  • 实验室测试结果: +,患有某种特定癌症?

  • 当我们已知:

    • 正确的阳性: 98% (患癌, 检测结果 +)
    • 正确的阴性: 97% (不患癌, 检测结果 -)
    • 在整个人群中,只有 0.008 患有癌症
      a r g m a x h ∈ H P ( D ∣ h ) P ( h ) \underset{h \in H}{argmax}P(D|h)P(h) hHargmaxP(Dh)P(h)

    P ( + ∣ c a n c e r ) P ( c a n c e r ) = 0.0078 , P ( + ∣ ¬ c a n c e r ) P ( ¬ c a n c e r ) = 0.0298 P(+|cancer)P(cancer) =0.0078, P(+|\neg cancer)P(\neg cancer) = 0.0298 P(+cancer)P(cancer)=0.0078,P(+∣¬cancer)P(¬cancer)=0.0298
    h M A P = ¬ c a n c e r h_{MAP}= \neg cancer hMAP=¬cancer
    P ( c a n c e r ) = 0.008      P ( ¬ c a n c e r ) = 0.992 P ( + ∣ c a n c e r ) = 0.98      P ( − ∣ c a n c e r ) = 0.02 P ( + ∣ ¬ c a n c e r ) = 0.03      P ( − ∣ ¬ c a n c e r ) = 0.97 \begin{align*} P(cancer) = 0.008 \ \ \ \ &P(\neg cancer)=0.992 \\ P(+|cancer) = 0.98 \ \ \ \ &P(-|cancer) = 0.02 \\ P(+|\neg cancer) = 0.03 \ \ \ \ &P(-|\neg cancer) = 0.97 \\ \end{align*} P(cancer)=0.008    P(+cancer)=0.98    P(+∣¬cancer)=0.03    P(¬cancer)=0.992P(cancer)=0.02P(∣¬cancer)=0.97

    选择假设 — 极大似然 ML

    h M A P = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) h_{MAP} = \underset {h \in H}{argmax}P(D|h)P(h) hMAP=hHargmaxP(Dh)P(h)
    在这里插入图片描述
    如果知道P(h),聪明的人总是能最大限度地从经验中学习

  • 如果我们完全不知道假设的概率分布,或者我们知道所有的假设发生的概率相同,那么MAP 等价于 Maximum Likelihood (hML 极大似然假设)
    h M L = a r g m a x h i i n H P ( D ∣ h i ) h_{ML} = \underset{h_i in H}{argmax}P(D|h_i) hML=hiinHargmaxP(Dhi)

ML 举例: 抛硬币问题

  • 2 个硬币: P1(H) = p,P2(H) = q
  • 抛1号硬币的概率是 a
  • 但是 a, p, q 未知的
  • 观察到一些产生序列:
    • 2HHHT,1HTHT, 2HHHT, 2HTTH
  • 估计 a, p, q 最有可能的值
  • “简单” 估计: ML (maximum likelihood,极大似然)
    - 抛一个(p,1-p)硬币 m 次,得到k 次 H 和 m-k 次 T
    l o g L ( D ∣ p ) = l o g P ( D ∣ p ) = l o g ( p k ( 1 − p ) m − k ) = k l o g p + ( m − k ) l o g ( 1 − p ) \begin{align*} logL(D|p) &= logP(D|p) \\ &=log(p^k(1-p)^{m-k} )\\ &=klogp+(m-k)log(1-p) \\ \end{align*} logL(Dp)=logP(Dp)=log(pk(1p)mk)=klogp+(mk)log(1p)
  • 求最大值,对 p 求导令导数为 0: d ( l o g L ( D ∣ p ) ) d p = k p − m − k 1 − p = 0 \frac{d(logL(D|p))}{dp} = \frac{k}{p} - \frac{m-k}{1-p} = 0 dpd(logL(Dp))=pk1pmk=0
  • 求解 p,得到: p = k / m p=k/m p=k/m

• 估计 a, p, q 最有可能的值
a = 1/4, p = 2/4, q = 8/12

极大似然 & 最小二乘

在这里插入图片描述

  • 训练数据: < x i , d i > <x_i,d_i> <xi,di>
  • d i = f ( x i ) + e i d_i = f(x_i) + e_i di=f(xi)+ei
    • di : 独立的样本.
    • f(xi): 没有噪声的目标函数值
    • ei: 噪声,独立随机变量,正态分布 N ( 0 , σ 2 ) N(0, σ^2) N(0,σ2)
  • → \rightarrow di : 正态分布 N ( f ( x i ) , σ 2 ) N(f(x_i),\sigma ^2) N(f(xi),σ2)
    在这里插入图片描述
    在这里插入图片描述
  • 独立随机变量,正态分布噪声 N ( 0 , σ 2 ) , h M L = h L S E N(0, \sigma^2), h_{ML} =h_{LSE} N(0,σ2),hML=hLSE

Naïve Bayesian Classifier (朴素贝叶斯分类器)

  • 假设目标函数 f : X → V X \rightarrow V XV,其中每个样本 x = (a1, a2, …, an). 那么最有可能的 f(x) 的值是:
    v M A P = a r g m a x v j ∈ V P ( x ∣ v j ) P ( v j ) v_{MAP} = \underset {v_j \in V}{argmax}P(x|v_j)P(v_j) vMAP=vjVargmaxP(xvj)P(vj)
  • 朴素贝叶斯假设:
    P ( x ∣ v j ) = P ( a 1 , a 2 . . . a n ∣ v j ) = ∏ i P ( a i ∣ v j ) P(x|v_j)=P(a_1,a_2...a_n|v_j)=\prod_iP(a_i|v_j) P(xvj)=P(a1,a2...anvj)=iP(aivj)
    每个属性 a 1 , a 2 . . . a n 独立 每个属性a_1,a_2...a_n独立 每个属性a1,a2...an独立
  • 朴素贝叶斯分类器:
    v N B = P v j ∈ V ( v j ) ∏ i P ( a i ∣ v j ) = a r g m a x v j ∈ V { l o g P ( v j ) + ∑ i l o g P ( a i ∣ v j ) } \begin{align*} v_{NB} &= \underset{v_j \in V}P(v_j)\prod_iP(a_i|v_j) \\ &=\underset{v_j \in V}{argmax}\{logP(v_j) + \sum_ilogP(a_i|v_j)\} \\ \end{align*} vNB=vjVP(vj)iP(aivj)=vjVargmax{logP(vj)+ilogP(aivj)}
    如果满足属性之间的独立性,那么 v M A P = v N B v_{MAP} = v_{NB} vMAP=vNB

举例1:词义消歧 (Word Sense Disambiguation)

  • e.g. fly =? bank = ?
  • 对于单词 w,使用上下文 c 进行词义消歧
    • e.g. A fly flies into the kitchen while he fry the chicken. (他在炸鸡时一只苍蝇飞进了厨房)
    • 上下文 c: 在词 w 周围的一组词wi(即:特征 / 属性)
    • si: 词 w 的第 ith 个含义(即:输出标签)
  • 朴素贝叶斯假设: P ( c ∣ s k ) = ∏ w i ∈ c P ( w i ∣ s k ) P(c|s_k)=\prod_{w_i \in c}P(w_i|s_k) P(csk)=wicP(wisk)
  • 朴素贝叶斯选择: s = a r g m a x s k { l o g P ( s k ) + ∑ w i ∈ c l o g P ( w i ∣ s k ) } s=\underset{s_k}{argmax}\{logP(s_k) + \sum_{w_i \in c}logP(w_i|s_k)\} s=skargmax{logP(sk)+wiclogP(wisk)}
    其中: P ( s k ) = C ( s k ) C ( w )       P ( w i ∣ s k ) = C ( w i , s k ) C ( s k ) P(s_k) = \frac{C(s_k)}{C(w)}\ \ \ \ \ P(w_i|s_k) = \frac{C(w_i,s_k)}{C(s_k)} P(sk)=C(w)C(sk)     P(wisk)=C(sk)C(wi,sk)

举例 2: 垃圾邮件过滤

在这里插入图片描述

  • 垃圾邮件量: 900亿/天,80% 来自 <200 发送者
  • 第四季度主要垃圾邮件来源 (数据来自 Sophos)
    • 美国 (21.3% 垃圾信息来源,较28.4%有所下降)
    • 俄罗斯 (8.3%, 较 4.4% 有上升)
    • 中国 (4.2%, 较 4.9% 有下降)
    • 巴西 (4.0%, 较 3.7% 有上升)

垃圾邮件过滤问题中人们学到的经验

  • 不要武断地忽略任何信息
    • E.g. 邮件头信息
  • 不同的代价: 假阳性 v.s. 假阴性
  • 一个非常好的参考报告: http://www.paulgraham.com/better.html

从垃圾邮件过滤中学到的经验

(根据报告:)
早期关于贝叶斯垃圾邮件过滤的论文有两篇,于1998年发表在同一个会议
在这里插入图片描述

1) 作者是 Pantel 和 Lin; 2) Microsoft 研究院的一个小组

Pantel 和 Lin的过滤方法效果更好
但它只能捕捉92%的垃圾邮件,且有1.16% 假阳性错误
文章作者实现了一个贝叶斯垃圾邮件过滤器
能捕捉 99.5%的垃圾邮件假阳性错误低于0.03%

Subject*FREE 0.9999
Subject*free 0.9782, 
free 0.6546 
free!! 0.9999
  • 5 处不同
  1. 他们训练过滤器的数据非常少:
    • 160 垃圾邮件和466非垃圾邮件
      2.最重要的一个不同可能是他们忽略了邮件头
      3.Pantel 和 Lin 对词进行了stemming (词干化) —— 做法有些草率了
      4.计算概率的方式不同。他们使用了全部的词,但作者只用了最显著的15个词
      5.他们
      没有对假阳性做偏置
      。而作者考虑了:对非垃圾邮件中出现的词频翻倍

MDL (最小描述长度,Minimum Description Length)

  • 奥卡姆剃刀:
    • 偏向于最短的假设
  • MDL:
    • 偏向假设 h 使得最小化: h M D L = a r g m i n h ∈ H { L C 1 ( h ) + L C 2 ( D ∣ h ) } h_{MDL}=\underset{h \in H}{argmin}\{L_{C_1}(h) + L_{C_2}(D|h)\} hMDL=hHargmin{LC1(h)+LC2(Dh)}
      其中 L C ( x ) L_C(x) LC(x)是 x在编码C下的 描述长度

MDL解释(基于信息理论)

  • 为随机发送的信息所设计的编码
    • 遇到消息 i 的概率是 pi
  • 所需的最短编码(最小期望传输位数)是什么?
    • 为可能性较大的消息赋予较短的编码
      在这里插入图片描述
  • 最优编码对消息i 的编码长度为 -log2 p 比特 [Shannon & Weaver 1949]
    在这里插入图片描述

MDL 和 MAP

-log2 p (h): 假设空间H最优编码下,h 的长度
-log2 p (D|h): 最优编码下,给定h 时D 的描述长度
在这里插入图片描述

对MDL的另一个解释

h M D L = a r g m i n h ∈ H { L C 1 ( h ) + L C 2 ( D ∣ h ) } h_{MDL} = \underset {h \in H}{argmin}\{L_{C_1}(h) + L_{C_2}(D|h)\} hMDL=hHargmin{LC1(h)+LC2(Dh)}

  • h的长度给定h编码数据的代价

    • 假设实例的序列以及编码规则对发送者和接收者来说都是已知的
    • 没有分类错误: 除h外不需要传输额外的信息
    • 如果 h 错误分类了某些样本,则需要传输:
        1. **哪个实例出错了? **
          – 最多 log2m (m: 实例的个数)
        1. **正确的分类结果是什么? **
          – 最多 log2k (k: 类别的个数)
  • 权衡: 假设的复杂程度 vs. 由假设造成的错误数

    • 更偏好 一个短的且错误更少的假设
      而不是一个长的但完美分类训练数据的假设
      在这里插入图片描述

总结

  • 贝叶斯定理
    • 用先验概率来推断后验概率
  • M a x   A   P o s t e r i o r , M A P , h M A P ,极大后验假设 Max\ A\ Posterior, MAP, h_{MAP} ,极大后验假设 Max A Posterior,MAP,hMAP,极大后验假设
  • M a x i m u m L i k e l i h o o d , M L , h M L , 极大似然假设 Maximum Likelihood, ML, h_{ML}, 极大似然假设 MaximumLikelihood,ML,hML,极大似然假设
    • • ML vs. LSE (最小二乘,Least Square Error)
  • Naïve Bayes, NB, 朴素贝叶斯
    • 独立属性/特征假设
    • NB vs. MAP
  • Maximum description length, MDL (最小描述长度)
    • 权衡: 假设复杂度 vs. 假设带来的错误
    • MDL vs. MAP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/846477.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023最新 Dreamweaver 下载安装教程(非常详细)从零基础入门到精通,看完这一篇就够了(附安装包)

软件介绍 Dreamweaver简称“DW”&#xff0c;是一款专业的网页设计软件&#xff0c;集网页制作和网站管理于一身的即时检索的网页代码编辑器&#xff0c;利用对 HTML、CSS、JavaScript 等内容的支持&#xff0c;设计人员和开发人员可以在几乎任何地方快速制作并发布网页。借助…

https证书的作用是什么?

如今很多企业都有属于自己的网站&#xff0c;因为当今是网络时代&#xff0c;企业借助网站基本的发展会更加好。 网站的安全性是很重要的&#xff0c;一旦安全无法保障&#xff0c;就容易出现敏感信息被盗用的情况&#xff0c;这对企业是非常不利的&#xff0c;这个时候就需要…

图像提示词攻略--基于 stable diffusion v2

Stable Diffusion 是一种潜在的文本到图像扩散模型&#xff0c;能够在给定任何文本输入&#xff08;称为提示&#xff09;的情况下生成逼真的图像。 在本文中&#xff0c;我将讨论和探索一些提高提示有效性的方法。从在提示中添加某些关键字和组合词、从更改单词顺序及其标点符…

Vue中监听路由参数变化的几种方式

目录 一. 路由监听方式&#xff1a; 通过 watch 进行监听 1. 监听路由从哪儿来到哪儿去 2. 监听路由变化获取新老路由信息 3. 监听路由变化触发方法 4. 监听路由的 path 变化 5. 监听路由的 path 变化, 使用handler函数 6. 监听路由的 path 变化&#xff0c;触发method…

iOS 实现图片高斯模糊效果

效果图 用到了 UIVisualEffectView 实现代码 - (UIVisualEffectView *)bgEffectView{if(!_bgEffectView){UIBlurEffect *blur [UIBlurEffect effectWithStyle:UIBlurEffectStyleLight];_bgEffectView [[UIVisualEffectView alloc] initWithEffect:blur];}return _bgEffect…

QCustomPlot 给出的测试用例图示

0 1 2 3 4 5 6 7 8 9 10 移动 11 12 13 14 15 移动 16 17 18 19 20

高翔《自动驾驶中的SLAM技术》代码详解 — 第6章 2D SLAM

目录 6.2 扫描匹配算法 6.2.1 点到点的扫描匹配 6.2 扫描匹配算法 6.2.1 点到点的扫描匹配 // src/ch6/test_2dlidar_io.cc // Created by xiang on 2022/3/15. // #include <gflags/gflags.h> #include <glog/logging.h> #include <opencv2/highgui.hpp>…

Vue3如何获取和操作DOM元素

Vue3如何获取和操作DOM元素 环境&#xff1a;vue3tsvite 目标&#xff1a; 1.修改DOM的文本值和样式 2.获取后代子DOM元素,操作修改 <template><div class"content"><h1>演示</h1><p ref"pText1">这是ref为pText1的一段文…

【网络编程】揭开套接字的神秘面纱

文章目录 1 :peach:简单理解TCP/UDP协议 :peach:2 :peach:网络字节序 :peach:3 :peach:socket编程接口 :peach:3.1 :apple:socket 常见API :apple:3.2 :apple:sockaddr结构:apple: 4 :peach:简单的UDP网络程序 :peach:4.1 :apple:基本分析:apple:4.2 :apple:udpServer.hpp(重点…

海外跨境电商网站多语言一键翻译系统开发(java开源)

要搭建一个海外跨境电商网站多语言一键翻译系统&#xff0c;可以按照以下步骤进行&#xff1a; 1. 确定需求&#xff1a;首先&#xff0c;需要明确系统的功能需求和用户需求。例如&#xff0c;确定需要支持哪些语种&#xff0c;界面翻译和数据库翻译的具体要求等。 2. 选择开…

tomcat虚拟主机配置演示

一.新建用于显示的index.jsp文件&#xff0c;写入内容 二.修改tomcat/apache-tomcat-8.5.70/conf/server.xml配置文件 匹配到Host那部分&#xff0c;按上面格式在后面添加自己的域名和文件目录信息 主要是修改name和docBase 保存退出重启tomcat&#xff0c;确保tomcat运行…

0基础学习VR全景平台篇 第80篇:Insta360 影石如何直播推流

一、下载Insta360 Pro APP 1、手机进入Insta360官网Insta360 | Action Cameras | 360 Cameras | VR Cameras&#xff0c;页面往下滑动到Insta360 Pro2相机处&#xff0c;点击相机图片进入详情页。详情页继续下滑到到手机APP处&#xff0c;根据自己的手机系统选择对应的客户端进…

uView之u-line-progress进度条数值小时显示不全

经过测试&#xff0c;可以以10为分界点&#xff0c;百分比小于10的时候&#xff0c;自定义进度条数值的位置和颜色&#xff0c;如下所示&#xff1a; <u-line-progress :percent"percent"><text v-if"percent<10" style"position: absol…

Linux的shell脚本常用命令

1、前提 使用shell脚本可以将所要执行的命令行进行汇总&#xff0c;统一执行&#xff0c;制作为脚本工具&#xff0c;简化重复性工作 1.1、常用命令 1.1.1、启动命令 假设我们拥有一个halloWord.sh的脚本&#xff0c;通过cd 命令进入相对应的目录下 ./halloWord.sh1.1.2、…

Linux 常用操作命令

Linux简介及Ubuntu安装 Linux&#xff0c;免费开源&#xff0c;多用户多任务系统。基于Linux有多个版本的衍生。RedHat、Ubuntu、Debian 安装VMware或VirtualBox虚拟机。具体安装步骤&#xff0c;找百度。 再安装Ubuntu。具体安装步骤&#xff0c;找百度。 常用指令 ls  …

产业互联网-跨境电商B2B平台

【背景】&#xff1a;互联网已经进入web3.0时代&#xff0c;产业互联网是互联网关键时点&#xff0c;特别是跨境电商&#xff0c;速卖通&#xff0c;亚马逊&#xff0c;wish Ebay&#xff0c;还有出海的titok,temu等&#xff0c;中国企业或平台走出来也是一条光明大通&#xff…

激活函数总结(二):ELU、SELU、GELU激活函数

激活函数总结&#xff08;二&#xff09;&#xff1a;ELU、SELU、GELU激活函数 1 引言2. 激活函数2.1 ELU&#xff08;Exponential Linear Unit&#xff09;激活函数2.2 SELU&#xff08;Scaled Exponential Linear Unit&#xff09;激活函数2.3 GELU激活函数 3. 总结 1 引言 …

ArcGIS Pro字段操作代码汇总

属性表是GIS数据的重要组成部分&#xff0c;有了属性表才可以进行分析和分类配色等操作&#xff0c;这里为大家介绍一下ArcGIS Pro中字段操作的相关代码&#xff0c;希望能对你有所帮助。 关键词搜索 打开属性表&#xff0c;点击按属性选择&#xff0c;如下图所示。 点击按属…

【java】final

final final修饰属性fianl修饰方法fianl修饰类 final修饰属性 final可以修饰变量&#xff1a;变量的值一旦初始化后无法修改 final可以修饰属性&#xff1a;那么JVM无法自动进行初始化&#xff0c;需要自己进行初始化, 属性值不能发生变化。 public class chapter15 {public …

鸿鹄工程项目管理系统em Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下&#xff1a; 首页 工作台&#xff1a;待办工作、消息通知、预警信息&#xff0c;点击可进入相应的列表 项目进度图表&#xff1a;选择&#xff08;总体或单个&#xff09;项目…