自动驾驶新方法登Nature封面:让黑夜如白昼般清晰,浙大博士一作

news2025/1/20 3:46:59

摘要:

通过克服传统解决方案中的“重影”问题,这种方法在基准测试中一显巨大优势,不仅能像白天一样看清环境的纹理和深度,还能感知到RGB、热视觉以外的各种物理信息,可谓相当利好机器感知尤其是自动驾驶行业。

利用AI打辅助,让机器夜视能力和白天一样清晰——

今天,这样一种颠覆已有热成像技术的新方法登上了Nature封面。

图片

它来自美国普渡大学和密歇根州立大学,一作为浙大毕业的博士。

通过克服传统解决方案中的“重影”问题,这种方法在基准测试中一显巨大优势,不仅能像白天一样看清环境的纹理和深度,还能感知到RGB、热视觉以外的各种物理信息,可谓相当利好机器感知尤其是自动驾驶行业。

图片

而作者则认为,该成果对第四次工业革命还能直接起到加速作用。

何以见得?我们翻开论文来看。

像白天一样清楚的夜视能力

目前比较前沿的机器感知方法是利用无处不在的热信号来重现环境信息。

但是它有一个非常明显的缺点,就是会产生“重影效应(ghosting effect)”。

图片

具体而言,该效应是指由于物体和环境在不断发射热辐射,导致三个物理属性,即温度(T,物理状态)、发射率(e,材料指纹)和纹理(X,表面几何形状)混合在光子流中出现的一种现象(仅限于夜视情况)。

这种现象主要造成的是环境/物体的纹理缺失,如下图所示:

只有当灯泡关闭时我们才能看到灯泡上的几何纹理,一旦发光就完全消失,而黑体辐射不可能被“关闭”,所以也就意味着我们得到的热图像总是缺乏纹理,不能看到一个完全真实的黑暗世界。

图片

在此,作者提出了一种名为HADAR(heat-assisted detection and ranging )的方法,它以热光子流为输入,记录高光谱成像热立方体,通过TeX分解来解决重影效应这一挑战。

图片

作者表示,TeX分解利用机器学习生动地从杂乱的热信号中恢复纹理(如下图彩色部分),并使人工智能算法能够达到信息论的极限,而到目前为止,传统的RGB或热视觉办法很难做到。

图片

它的具体实现如下图所示:

图片

作者介绍,其架构的物理学灵感来自三个方面。

首先,热立方体的TeX分解依赖于空间模式和光谱热特征,这启发了他们在UNet模型中采用光谱和金字塔(空间)注意力层。

其次,由于TeX的简并性,必须指定以下数学结构来确保逆映射的唯一性(α、β代表物体的指数,v是波数),因此必须学习热照明系数V而不是纹理X。也就是说,TeX-Net不能端到端地训练。

图片

最后,材料库M及其维度是整个网络的关键。

除此之外,作者还提出了一种非机器学习方法,即TeX-SGD来生成TeX-vison作为补充。

在测试中,我们能看到HADAR方法带来了超高精度。

如下图所示,第一行显示基于原始热图像的测距方法由于重影导致精度很差;第二行则显示与热测距相比,HADAR中恢复的纹理和增强的精度约达100倍;

图片

而在下面的场景中(黑色汽车、人和爱因斯坦纸板),我们能看到:

视觉驱动的物体检测在光学成像中(a)错误地识别出了两个人和一辆汽车,而激光雷达点云(c)不但识别到两个人还把汽车给丢了,只有HADAR方法能够带来全面的理解,准确框出一人一车。

图片

最后这一组图则充分证明,HADAR在夜间的总体视觉能力优于目前最先进的热测距方法(GCNDepth),其RGB立体视觉更是和白天测试到的基本处于一个水平,即HADAR在黑暗中看到环境纹理和深度,就像白天一样。

图片

作者介绍


一作Fanglin Bao,普渡大学研究员。他于2011年6月在浙江大学获得物理学学士学位,2016年6月获得光学博士学位。

Fanglin Bao之前的研究集中于非均匀系统中的卡西米尔效应(量子力学),目前则延伸到张量网络、神经网络及其在量子物理学中的应用。

通讯作者为普渡大学电气与计算机工程教授Zubin Jacob,以及密歇根州立大学计算机科学与工程系助理教授Vishnu Boddeti(后者正在招收“数学背景很强”的学生)。

图片

图片

论文地址:https://www.nature.com/articles/s41586-023-06174-6

来源 | 量子位

【免责声明】文章为作者个人观点,不代表本平台立场。如因作品内容、版权等存在问题,请于本文发布30日内私信联系进行删除或洽谈版权使用事宜。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/842975.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flink多流处理之connect拼接流

Flink中的拼接流connect的使用其实非常简单,就是leftStream.connect(rightStream)的方式,但是有一点我们需要清楚,使用connect后并不是将两个流给串联起来了,而是将左流和右流建立一个联系,作为一个大的流,并且这个大的流可以使用相同的逻辑处理leftStream和rightStream,也可以…

【Leetcode】(自食用)删除链表中倒数第k个结点

step by step. 题目: 给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 示例 1: 输入:head [1,2,3,4,5], n 2 输出:[1,2,3,5]示例 2: 输入:head [1], n 1 输出&a…

Golang之路---04 并发编程——互斥锁和读写锁

互斥锁和读写锁 面对并发问题,我们始终应该优先考虑使用信道,如果通过信道解决不了的,不得不使用共享内存来实现并发编程的,那 Golang 中的锁机制,就是你绕不过的知识点了。 在 Golang 里有专门的方法来实现锁&#x…

【C++】哈希闭散列

一.哈希的概念 在前面学习了二叉搜索树、AVL树、红黑树之后,我们得知顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须经过关键码的多次比较。顺序查找的时间复杂度为 O(N)&#xff0c…

0.CLIP

目录 前言背景缘起/摘要数据集拟解决问题 精读IntroductionModel2.1自然语言监督2.2 创建一个有效的大数据集选择一个有效的预训练方法2.4 选择模型(选择Encoder)2.5训练小结 实验 复现(略) 前言 本课程来自深度之眼《多模态》训…

找免费商用的图片素材就上这6个网站。

分享6个免费商用的高清图片素材库,你想要找到这里都能找到,赶紧收藏起来吧~ 菜鸟图库 https://www.sucai999.com/pic.html?vNTYwNDUx 网站主要是为新手设计师提供免费素材的,素材的质量都很高,类别也很多,像平面、UI…

Zhang-Suen骨架提取算法

前言 本专栏针对的目标物体为物体裂缝量化,提取裂缝的骨架有助于裂缝长度的求解,故这一篇也是本专栏的开篇。 细化算法选择与分析 裂缝骨架的提取是十分有必要,如果我们能够得到裂缝的骨架图那么就很容易获得整条裂缝的长度。在当前经典的…

机器学习深度学习——序列模型(NLP启动!)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——卷积神经网络(LeNet) 📚订阅专栏:机器学习&&深度…

地理信息系统空间分析实验教程 第三版 第八章示例与练习 学校选址

学校选址 背景 合理的学校空间位置布局有利于学生的上课与生活。学校的选址问题需要考虑地理 E八位置、学生娱乐场所配套设施、与现有学校的距离等因素,从总体上把握这些国素能够确定出适宜性比较好的学校选址区 目的 通过练习,熟悉 ArcGIS 栅格数据…

无涯教程-Perl - endnetent函数

描述 此功能告诉系统您不再希望使用getnetent从网络列表中读取条目。 语法 以下是此函数的简单语法- endnetent返回值 此函数不返回任何值。 例 以下是显示其基本用法的示例代码- #!/usr/bin/perluse Socket;while ( ($name, $aliases, $addrtype, $net) getnetent() )…

VUE框架:vue2转vue3全面细节总结(3)路由组件传参

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人_python人工智能视觉(opencv)从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了: https://blog.csdn.net/lbcy…

element表格+表单+表单验证结合运用

目录​​​​​​​ 一、结果展示 二、实现代码 一、结果展示 1、图片 2、描述 table中放form表单,放输入框或下拉框或多选框等; 点击添加按钮,首先验证表单,如果存在没填的就验证提醒,都填了就向下添加一行表单表…

Redis中BigKey、HotKey的发现与处理

Redis中BigKey、HotKey的发现与处理 内容详情: 阿里云开发者社区(点击跳转) 参考自: https://developer.aliyun.com/article/788271?utm_contentm_1000291945#slide-1

【数据结构OJ题】删除有序数组中的重复项

原题链接:https://leetcode.cn/problems/remove-duplicates-from-sorted-array/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 用双指针算法,定义两个变量src和dst,一开始让src和dst指向num[ ]数组的第一个元素&a…

Cadence学习

Cadence学习 Cadence内容涵盖Cadence主要功能Cadence功能模块Allegro Design Entry CIS 和 OrCAD Capture CIS 的区别Cadence 公司简介Allegro Design Entry CISOrCAD Capture CIS OrCAD中part和database part区别OrCAD中不同页面的连接关系应该怎么处理(1&#xff…

Matlab之利用MarkerFaceColor来填充marker

matlab画图在加一些marker的时候, 有实心的圆圈, 比如: plot(x,y,.r,MarkerSize,20)但是如果想要一个很大的marker, 就需要把这个markersize调得很大, 比如MarkerSize20 但是也可以用空心的圆圈然后把中间涂上颜色, 这样调整起来更方便. 比如: plot(x,y,or,MarkerSize,5,Mar…

拆分PDBQT文件并将其转换为PDB格式

拆分PDBQT文件转为PDB格式 1. vina_split拆分PDBQT文件 假设你用AutoDock Vina做了对接,那么所有预测的结合构象都被放入一个多构象 PDBQT 文件中,如果需要拆分后进行可视化分析,那么Vina官方自带了vina_split来进行拆分。下面是vina_split…

TS协议之PES(ES数据包)

TS协议之PAT(节目关联表)TS协议之PMT(节目映射表)TS协议之PES(ES数据包) 该文档已上传:下载地址 1. 概要 1.1 TS数据包(PES)协议数据组成 TSTS头PES头ES。TS&#xf…

在 Ubuntu 上安装 Docker 桌面

Ubuntu 22.04 (LTS) 安装 Docker 桌面 要成功安装 Docker Desktop,您必须: 满足系统要求拥有 64 位版本的 Ubuntu Jammy Jellyfish 22.04 (LTS) 或 Ubuntu Impish Indri 21.10。对于非 Gnome 桌面环境,必须安装 gnome-terminal:…

springsecurity初稿

springsecurity 课程 课程目标 权限管理简介【了解】权限管理解决方案【掌握】初识Spring Security【了解】Spring Security 认证配置【掌握】Spring Security 鉴权配置【掌握】Spring Security 底层原理【掌握】Spring Security 退出操作【重点】Spring Security整合JWT【重…