jmeter中提供了很多性能数据的监听器,我们通过监听器可以来分析性能瓶颈
本文以500线程的阶梯加压测试结果来描述图表。
常用监听器
1:Transactions per Second
监听动态TPS,用来分析吞吐量。其中横坐标是运行时间,纵坐标是TPS值。红色表示通过的TPS,绿色表示失败的。
最大TPS大约在140左右,从1分26秒左右,开始有未通过的事物
2:Hits per Second
动态监听单位时间的点击率,也就是触发的请求数。其中横坐标是运行时间,纵坐标是HPS值。
点击率波动较大,且不能持续上升。说明性能很不稳定
3:Response Times Over Time
监听整个事物运行期间的响应时间。其中横坐标是运行时间,纵坐标是响应时间(单位是毫秒)
响应时间在4950ms左右开始稳定下来,后续又经历一次大的波动
4:Response Times vs Threads
线程活动期间的响应时间监听。其中横坐标是活动的线程数(也就是并发数),纵坐标是响应时间(单位是毫秒)
5: Active Threads Over Time
监听单位时间内活动的线程数。其中横坐标是单位时间(单位是毫秒),纵坐标是活动线程数(也就是并发数)
6:Response Times Percentiles
监听响应时间分布的百分比。其中横坐标是请求数的百分比,纵坐标是响应时间。此图表示有99.7%的请求响应时间在5s以内。
7:Response Times Distribution
响应时间分布的柱状图。其中横坐标是柱状分布图,纵坐标是响应时间。此图表示大约有111个请求响应时间在5076ms。
8:Composite Graph
组合式的监听器。其中横坐标是运行时间,纵坐标是各性能数据的汇总值(其中有一些数据需要除以10)。
总结
不同的监听器可以监听不同的性能数据,但是想要在图表中直观的分析出性能的瓶颈,就需要组合式的监听器。例如通过响应时间和吞吐量的分布得出吞吐量的拐点。
通过以上图表能看出来,在持续加压的事物场景中,99.7%的请求响应时间都控制在了5s以内。
感谢每一个认真阅读我文章的人!!!
我个人整理了我这几年软件测试生涯整理的一些技术资料,包含:电子书,简历模块,各种工作模板,面试宝典,自学项目等。欢迎大家点击下方名片免费领取,千万不要错过哦。
Python自动化测试学习交流群:全套自动化测试面试简历学习资料获取点击链接加入群聊【python自动化测试交流】:http://qm.qq.com/cgi-bin/qm/qr?_wv=1027&k=DhOSZDNS-qzT5QKbFQMsfJ7DsrFfKpOF&authKey=eBt%2BF%2FBK81lVLcsLKaFqnvDAVA8IdNsGC7J0YV73w8V%2FJpdbby66r7vJ1rsPIifg&noverify=0&group_code=198408628