数据结构--算法的时间复杂度和空间复杂度

news2025/1/12 18:43:19

文章目录

  • 算法效率
  • 时间复杂度
    • 时间复杂度的概念
    • 大O的渐进表示法
    • 计算实例
  • 时间复杂度
    • 实例
  • 常见复杂度对比
  • 例题

算法效率

算法效率是指算法在计算机上运行时所消耗的时间和资源。这是衡量算法执行速度和资源利用情况的重要指标。

例子:

long long Fib(int N)
{
	if(N < 3)
		return 1;
	return Fib(N-1) + Fib(N-2);
}

这是一个斐波那契函数,用的是递归的计算方法,每次创建函数就会在栈区开辟一块空间,递归次数越多,开辟空间越多;
所以,代码的简洁说明不了算法的效率

算法效率的评估主要包括时间复杂度和空间复杂度:

  1. 时间复杂度:时间复杂度描述了算法执行所需的时间随输入规模增加而增长的趋势。常见的时间复杂度包括常数时间O(1)、线性时间O(n)、对数时间O(log n)、平方时间O(n²)等。通过分析算法中关键操作的执行次数来确定时间复杂度,通常使用大O符号表示。

  2. 空间复杂度:空间复杂度描述了算法在执行过程中所需的额外存储空间随输入规模增加而增长的趋势。常见的空间复杂度包括常数空间O(1)、线性空间O(n)、对数空间O(log n)等。通过分析算法中使用的数据结构和辅助空间来确定空间复杂度。

评估算法效率时,我们希望选择具有更低时间复杂度和空间复杂度的算法,以提高程序的执行速度和资源利用率。但需要注意的是,时间复杂度和空间复杂度通常存在着一定的取舍关系,有时需要在时间和空间之间做出权衡。

除了时间复杂度和空间复杂度,还可以考虑一些实际情况下的算法效率问题,如最坏情况、平均情况和最好情况下的执行时间,以及算法在特定硬件环境下的性能等。综合考虑这些因素可以更全面地评估算法的效率。

为了提高算法效率,我们可以采用一些常见的优化方法,如减少循环次数、使用合适的数据结构和算法、剪枝和缓存等。同时,也可以借助工具和框架来提升算法效率,如并行计算、GPU加速、分布式计算等。

时间复杂度

时间复杂度的概念

在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

例子:计算Func1中的++count语句执行了多少次?

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N ; ++ i)
	{
		for (int j = 0; j < N ; ++ j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

两个循环嵌套就是N^2,再一个单独的循环2*N,加上10;
那么

F(N)=N^2+2*N+10;

N=10时,F(N)=130
N=100时,F(N)=10210
N=1000时,F(N)=1002010
会发现N越大,F(N)越接近N^2;
在实际计算时间复杂度中,我们其实不一定要精准的计算出执行的次数,只需要大概的执行次数,那么这里我们使用大O的渐进表示法;

大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。是一种用于衡量算法时间复杂度的渐进表示方法;

推导大O阶方法
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

用大O的渐进表示法,Func1的时间复杂度为:O(N^2)

N=10时,F(N)=100
N=100时,F(N)=10000
N=1000时,F(N)=1000000
通过计算我们发现,这样的表示方法去掉那些对结果影响不大的项,简明了洁表示出执行次数;
对于一些算法,会有好坏的情况,对于这种情况我们取最坏的情况
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
时间复杂度O(N);

计算实例

void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里M是一个常数项,N是一个未知数,所以我们可以先把常数项略去;然后就只剩下2N,通过计算规则,省去最高项的常数;那么这个函数的时间复杂度为O(N);

void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++ k)
	{
		++count;
	}
	for (int k = 0; k < N ; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}

在这里,M与N都是未知数,且它们是同阶的,所以对于这种情况就要分类讨论:
M与N差不多大,那么时间复杂度:O(M)或O(N)
M远大于N,时间复杂度:O(M)
N远大于M,时间复杂度:O(N)

void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}

这里给出了明确的次数,所以时间复杂度为O(1);

const char * strchr ( const char * str, int character );

查找字符串中第一个出现的字符返回指向 C 字符串
str 中第一个出现的字符的指针。
终止空字符被视为 C 字符串的一部分。因此,也可以定位它以检索指向字符串末尾的指针。

这个就是在字符串中寻找一个字符,对于这种就要分好坏情况;
最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)。

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
				Swap(&a[i-1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
		break;
	}
}

这是一个冒泡排序,很明显这个两个循环在嵌套;外循环执行1次,内循环就得执行N次;那么外循环执行N次,总共就执行N^2次
时间复杂度O(N^2);

int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n-1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end-begin)>>1);
		if (a[mid] < x)
			begin = mid+1;
		else if (a[mid] > x)
			end = mid-1;
		else
			return mid;
	}
	return -1;
}

这是一个二分查找函数,也叫折半查找;我们以最坏的情况去看,每循环一次这个数组的长度就会减半,假设以N表示数组的长度,我们要在数组中寻找一个数,那么假设寻找了x次,那么通过计算2^x=N;再通过换算就是x=log2 N;2是对数的底数,由于底数不好表示,所以对于这个函数的时间复杂度就是为O(logN);

在这里插入图片描述

long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}

这是一个阶乘递归函数,每递归一次N减1,直至为0,才返回;
那么时间复杂度为O(N)

long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}

这是开头的例子,斐波那契递归函数,每次在函数中就会递归到两个函数中去;
在这里插入图片描述
递归到最后,会发现像个金字塔一样,全部加起来F(N)=1+2+4+8+……+2(N-1),由数学的等比求和公式得F(N)=2^N-1;
那么时间复杂度为F(N)=2^N;

时间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例

void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
				Swap(&a[i-1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
		break;
	}
}

在这里函数所开辟的空间都是局部变量在栈区开辟的,是已经确定下来的;
所以,空间复杂度为O(1)

long long* Fibonacci(size_t n)
{
	if(n==0)
	return NULL;
	long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n ; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
	}
	return fibArray;
}

这里用了malloc函数在堆区开辟了N个额外空间,所以
空间复杂度为O(N)

long long Fac(size_t N)
{
	if(N == 0)
	return 1;
	return Fac(N-1)*N;
}

这里用了递归的方法,每递归一次就会在栈帧中开辟一次空间,总共开辟N次,每次空间内为常数次大,所以
空间复杂度O(N);

常见复杂度对比

在这里插入图片描述

在这里插入图片描述

例题

在这里插入图片描述

在这里插入图片描述
这里用三种办法来解答:
第一种
在这里插入图片描述

时间复杂度:O(N^2)
空间复杂度:O(1)

这里利用这种方法,就是用两个循环嵌套,最终就得出了复杂度;

第二种
在这里插入图片描述
通过开辟额外空间,将对应位置的数字进行放入新数组中,最后再返回到原数组中;

时间复杂度:O(N)
空间复杂度:O(N)

void rotate(int* nums, int numsSize, int k){
	//开辟额外空间
	int* new=(int*)malloc(sizeof(int)*numsSize);
	//当k长度超过数组长度时
	k%=numsSize;
	memcpy(new,nums+numsSize-k,sizeof(int)*k);
	memcpy(new,nums,sizeof(int)*(numsSize-k));
	memcpy(nums,new,sizeof(int)*numsSize);

	free(new);
	
}

第三种
在这里插入图片描述
利用倒置再倒置的方法就将数组右旋;

时间复杂度:O(N)
空间复杂度:O(1)

//将数组进行倒置
void reserve(int* sem,int left,int right)
{
    while(left<right)
    {
        int tmp=sem[left];
        sem[left]=sem[right];
        sem[right]=tmp;
        left++;
        right--;
    }

}
void rotate(int* nums, int numsSize, int k){
    
    k%=numsSize;//如果k的长度大于numsize,需要取余
    //利用部分数组倒置,在全数组倒置的方法进行轮转
    reserve(nums,0,numsSize-k-1);
    reserve(nums,numsSize-k,numsSize-1);
    reserve(nums,0,numsSize-1);

    
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/805472.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何建立Docker私有仓库?

文章目录 docker私有仓库harborHarbor仓库部署Harbor仓库使用 docker私有仓库 Docker 私有仓库是一个用于存储和管理 Docker 镜像的私有存储库。它允许你在内部网络中创建和管理 Docker 镜像&#xff0c;并提供了更好的安全性和控制&#xff0c;因为你可以完全控制谁能够访问和…

el-table 设置行背景颜色 鼠标移入高亮问题处理

一、 设置行背景颜色 1. 需求描述 后端返回表格数据&#xff0c;有特定行数需要用颜色标识。类似于以下需求&#xff1a; 2. 解决方式 方式区别:row-class-name“tableRowClassName”已返回类名的形式设置样式&#xff0c;代码整洁&#xff0c;但是会鼠标高亮&#xff0c…

【IDEA】idea不自动生成target

文章目录 1. 不生成target2. 仅部分文件不生成target2.1. 一般原因就是资源没有设置2.2. 配置编译src/main/java文件夹下的资源文件2.3. 清理缓存&#xff08;王炸&#xff09; 3. 参考资料 本文描述idea不生成target的几种情况以及处理方法 1. 不生成target 像下图这样根本就…

JavaSwing+MySQL的在线考试系统

点击以下链接获取源码&#xff1a; https://download.csdn.net/download/qq_64505944/88114390?spm1001.2014.3001.5503 JDK1.8 MySQL5.7 功能&#xff1a;开始做题&#xff0c;上一题&#xff0c;下一题&#xff0c;提交&#xff0c;每题都有时间限制

【SpringⅢ】Spring 的生命周期

目录 &#x1f96a;1 Bean 的作用域 &#x1f969;1.1 singleton&#xff1a;单例模式 &#x1f359;1.2 prototype&#xff1a;原型模式 &#x1f371;1.3 Bean 的其他作用域 &#x1f35c;2 Spring 生命周期(执行流程) &#x1f958;2.1 启动容器 &#x1f372; 2.2 读…

【代理模式】了解篇:静态代理 动态代理~

目录 1、什么是代理模式&#xff1f; 2、静态代理 3、动态代理 3.1 JDK动态代理类 3.2 CGLIB动态代理类 4、JDK动态代理和CGLIB动态代理的区别&#xff1f; 1、什么是代理模式&#xff1f; 定义&#xff1a; 代理模式就是为其他对象提供一种代理以控制这个对象的访问。在某…

图像 检测 - FCOS: Fully Convolutional One-Stage Object Detection (ICCV 2019)

FCOS: Fully Convolutional One-Stage Object Detection - 全卷积一阶段目标检测&#xff08;ICCV 2019&#xff09; 摘要1. 引言2. 相关工作3. 我们的方法3.1 全卷积一阶目标检测器3.2 FCOS的FPN多级预测3.3 FCOS中心度 4. 实验4.1 消融研究4.1.1 FPN多级预测4.1.2 有无中心度…

python学习时与chatgpt4对话的一些感悟

今天学SCENIC教程&#xff0c;看到里面有一句不是很懂 If you run this from a python script instead of a Jupyter notebook, please enclose the code in a if __name__ __main__: construct. 现在把和chatgpt4问答的内容发上来&#xff0c;确实是很厉害 没有太看懂&…

Verilog语法学习——LV6_多功能数据处理器

LV6_多功能数据处理器 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 根据指示信号select的不同&#xff0c;对输入信号a,b实现不同的运算。输入信号a…

蓝海卓越计费管理系统存在弱口令

连伟人的一生都充满了那么大的艰辛&#xff0c;一个平凡的人吃点苦又算得了什么呢&#xff1f; 漏洞描述 蓝海卓越计费管理系统存在弱口令漏洞 漏洞复现 访问漏洞url&#xff1a; 输入默认的账号密码&#xff1a;admin/admin 登录成功 文笔生疏&#xff0c;措辞浅薄&#…

小米手机MIUI优化的影响

1. 小/红米手机的MIUI优化选项 2. MIUI优化选项的影响 2.1 MIUI优化会影响应用信息展示 MIUI优化选项会影响到应用信息的内容展示&#xff0c;具体如下图所示&#xff1a; 如果我们需要在应用信息里展示自启动入口&#xff0c;那我们就需要开启MIUI优化。 2.2 MIUI优化会影…

C++对C的加强(全)

目录 C对C的加强 命名空间 为什么要使用命名空间 怎么使用命名空间 命名空间的定义 命名空间的使用 使用域解析符 :: 使用using声明 内联命名空间 嵌套命名空间 随时将新的成员加入命名空间 命名空间中 函数的声明和实现分开 无名命名空间 命名空间取别名 使用u…

苍穹外卖day08——地址簿+用户下单+订单支付(做不了)

导入地址簿——需求分析与设计 产品原型 接口设计 数据库设计 导入地址簿——代码导入 导入地址簿——功能测试 没有问题 用户下单——需求分析与设计 业务说明 业务流程 接口设计 数据库设计 用户下单——代码开发 DTO设计和VO设计 Controller层中 RequestMapping(&q…

Clock时钟电路PCB设计布局布线要求

时钟电路就是类似像时钟一样准确运动的震荡电路&#xff0c;任何工作都是依照时间顺序&#xff0c;那么产生这个时间的电路就是时钟电路&#xff0c;时钟电路一般是由晶体振荡器、晶振、控制芯片以及匹配电容组成&#xff0c;如图1所示。 图1 时钟电路 针对时钟电路PCB设计有以…

小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络

小白的机器学习之路&#xff08;四&#xff09; 引子神经网络的基本结构反向传播算法和激活函数优化器如何通过pytorch搭建自己的BP network 引子 当前交通大数据业务的需要&#xff0c;需要承担一部分算法工作&#xff08;数据处理&#xff09;&#xff0c;考虑到上次研究深度…

用哪些指标可以抓住现货白银趋势?

在现货白银走势分类中&#xff0c;走势一般来说之分成三类&#xff0c;一个是上升&#xff0c;一个是下跌&#xff0c;还有一个是水平。对于投资者来说&#xff0c;趋势&#xff0c;也就是上升或者下跌是我们喜爱的&#xff0c;那么我们如何捕捉这种趋势呢&#xff1f;我们可以…

【雕爷学编程】MicroPython动手做(02)——尝试搭建K210开发板的IDE环境

知识点&#xff1a;简单了解K210芯片 2018年9月6日,嘉楠科技推出自主设计研发的全球首款基于RISC-V的量产商用边缘智能计算芯片勘智K210。该芯片依托于完全自主研发的AI神经网络加速器KPU,具备自主IP、视听兼具与可编程能力三大特点,能够充分适配多个业务场景的需求。作为嘉楠科…

Verilog语法学习——LV9_使用子模块实现三输入数的大小比较

LV9_使用子模块实现三输入数的大小比较 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 在数字芯片设计中&#xff0c;通常把完成特定功能且相对独立的…

C#之泛型

目录 一、概述 二、C#中的泛型 继续栈的示例 三、泛型类 &#xff08;一&#xff09;声明泛型类 &#xff08;二&#xff09;创建构造类型 &#xff08;三&#xff09;创建变量和实例 &#xff08;四&#xff09;比较泛型和非泛型栈 四、类型参数的约束 &#xff08;一…

系统集成中级计算汇总

基本计算&#xff1a; EV 挣值 (实际完成的工作量) AC 实际发生的花费 PV 计划花费(预算) CV 成本 SV 进度 CV 和 SV 的计算 都是通过EV 减去另一个值 CV EV-AC SV EV-PV 成本 chengben C 开头 所以CV 是成本 CV 中有个C 所以用到的是 AC ,另外一个则是剩余的PV CV SV 计算…