04 - 慎重使用正则表达式

news2024/12/24 20:32:38

在讲 String 对象优化时,提到了 Split() 方法,该方法使用的正则表达式可能引起回溯问题,今天就来深入了解下,这究竟是怎么回事?

开始之前,我们先来看一个案例,可以帮助你更好地理解内容。

在一次小型项目开发中,我遇到过这样一个问题。为了宣传新品,我们开发了一个小程序,按照之前评估的访问量,这次活动预计参与用户量 30W+,TPS(每秒事务处理量)最高 3000 左右。

这个结果来自我对接口做的微基准性能测试。我习惯使用 ab 工具(通过 yum -y install httpd-tools 可以快速安装)在另一台机器上对 http 请求接口进行测试。

我可以通过设置 -n 请求数 /-c 并发用户数来模拟线上的峰值请求,再通过 TPS、RT(每秒响应时间)以及每秒请求时间分布情况这三个指标来衡量接口的性能,如下图所示(图中隐藏部分为我的服务器地址):

就在做性能测试的时候,我发现有一个提交接口的 TPS 一直上不去,按理说这个业务非常简单,存在性能瓶颈的可能性并不大。

我迅速使用了排除法查找问题。首先将方法里面的业务代码全部注释,留一个空方法在这里,再看性能如何。这种方式能够很好地区分是框架性能问题,还是业务代码性能问题。

我快速定位到了是业务代码问题,就马上逐一查看代码查找原因。我将插入数据库操作代码加上之后,TPS 稍微下降了,但还是没有找到原因。最后,就只剩下 Split() 方法操作了,果然,我将 Split() 方法加入之后,TPS 明显下降了。

可是一个 Split() 方法为什么会影响到 TPS 呢?下面我们就来了解下正则表达式的相关内容,学完了答案也就出来了。

1、什么是正则表达式?

很基础,这里带你简单回顾一下。

正则表达式是计算机科学的一个概念,很多语言都实现了它。正则表达式使用一些特定的元字符来检索、匹配以及替换符合规则的字符串。

构造正则表达式语法的元字符,由普通字符、标准字符、限定字符(量词)、定位字符(边界字符)组成。详情可见下图:

2、正则表达式引擎

正则表达式是一个用正则符号写出的公式,程序对这个公式进行语法分析,建立一个语法分析树,再根据这个分析树结合正则表达式的引擎生成执行程序(这个执行程序我们把它称作状态机,也叫状态自动机),用于字符匹配。

而这里的正则表达式引擎就是一套核心算法,用于建立状态机。

目前实现正则表达式引擎的方式有两种:DFA 自动机(Deterministic Final Automata 确定有限状态自动机)和 NFA 自动机(Non deterministic Finite Automaton 非确定有限状态自动机)。

对比来看,构造 DFA 自动机的代价远大于 NFA 自动机,但 DFA 自动机的执行效率高于 NFA 自动机。

假设一个字符串的长度是 n,如果用 DFA 自动机作为正则表达式引擎,则匹配的时间复杂度为 O(n);如果用 NFA 自动机作为正则表达式引擎,由于 NFA 自动机在匹配过程中存在大量的分支和回溯,假设 NFA 的状态数为 s,则该匹配算法的时间复杂度为 O(ns)。

NFA 自动机的优势是支持更多功能。例如,捕获 group、环视、占有优先量词等高级功能。这些功能都是基于子表达式独立进行匹配,因此在编程语言里,使用的正则表达式库都是基于 NFA 实现的。

那么 NFA 自动机到底是怎么进行匹配的呢?我以下面的字符和表达式来举例说明。

text=“aabcab” regex=“bc”

NFA 自动机会读取正则表达式的每一个字符,拿去和目标字符串匹配,匹配成功就换正则表达式的下一个字符,反之就继续和目标字符串的下一个字符进行匹配。分解一下过程。

首先,读取正则表达式的第一个匹配符和字符串的第一个字符进行比较,b 对 a,不匹配;继续换字符串的下一个字符,也是 a,不匹配;继续换下一个,是 b,匹配。

然后,同理,读取正则表达式的第二个匹配符和字符串的第四个字符进行比较,c 对 c,匹配;继续读取正则表达式的下一个字符,然而后面已经没有可匹配的字符了,结束。

这就是 NFA 自动机的匹配过程,虽然在实际应用中,碰到的正则表达式都要比这复杂,但匹配方法是一样的。

3、NFA 自动机的回溯 

用 NFA 自动机实现的比较复杂的正则表达式,在匹配过程中经常会引起回溯问题。大量的回溯会长时间地占用 CPU,从而带来系统性能开销。我来举例说明。

text=“abbc” regex=“ab{1,3}c”

这个例子,匹配目的比较简单。匹配以 a 开头,以 c 结尾,中间有 1-3 个 b 字符的字符串。NFA 自动机对其解析的过程是这样的:

首先,读取正则表达式第一个匹配符 a 和字符串第一个字符 a 进行比较,a 对 a,匹配。

然后,读取正则表达式第二个匹配符 b{1,3} 和字符串的第二个字符 b 进行比较,匹配。但因为 b{1,3} 表示 1-3 个 b 字符串,NFA 自动机又具有贪婪特性,所以此时不会继续读取正则表达式的下一个匹配符,而是依旧使用 b{1,3} 和字符串的第三个字符 b 进行比较,结果还是匹配。

接着继续使用 b{1,3} 和字符串的第四个字符 c 进行比较,发现不匹配了,此时就会发生回溯,已经读取的字符串第四个字符 c 将被吐出去,指针回到第三个字符 b 的位置。

那么发生回溯以后,匹配过程怎么继续呢?程序会读取正则表达式的下一个匹配符 c,和字符串中的第四个字符 c 进行比较,结果匹配,结束。

4、如何避免回溯问题?

既然回溯会给系统带来性能开销,那我们如何应对呢?如果你有仔细看上面那个案例的话,你会发现 NFA 自动机的贪婪特性就是导火索,这和正则表达式的匹配模式息息相关,一起来了解一下。

4.1、贪婪模式(Greedy)

顾名思义,就是在数量匹配中,如果单独使用 +、 ? 、* 或{min,max} 等量词,正则表达式会匹配尽可能多的内容。

例如,上边那个例子:

text=“abbc” regex=“ab{1,3}c”

就是在贪婪模式下,NFA 自动机读取了最大的匹配范围,即匹配 3 个 b 字符。匹配发生了一次失败,就引起了一次回溯。如果匹配结果是“abbbc”,就会匹配成功。

text=“abbbc” regex=“ab{1,3}c”

4.2、懒惰模式(Reluctant)

在该模式下,正则表达式会尽可能少地重复匹配字符。如果匹配成功,它会继续匹配剩余的字符串。

例如,在上面例子的字符后面加一个“?”,就可以开启懒惰模式。

text=“abc” regex=“ab{1,3}?c”

匹配结果是“abc”,该模式下 NFA 自动机首先选择最小的匹配范围,即匹配 1 个 b 字符,因此就避免了回溯问题。

4.3、独占模式(Possessive)

同贪婪模式一样,独占模式一样会最大限度地匹配更多内容;不同的是,在独占模式下,匹配失败就会结束匹配,不会发生回溯问题。

还是上边的例子,在字符后面加一个“+”,就可以开启独占模式。

text=“abbc” regex=“ab{1,3}+bc”

结果是不匹配,结束匹配,不会发生回溯问题。讲到这里,你应该非常清楚了,避免回溯的方法就是:使用懒惰模式和独占模式。

还有开头那道“一个 split() 方法为什么会影响到 TPS”的存疑,你应该也清楚了吧?

我使用了 split() 方法提取域名,并检查请求参数是否符合规定。split() 在匹配分组时遇到特殊字符产生了大量回溯,我当时是在正则表达式后加了一个需要匹配的字符和“+”,解决了这个问题。

\\?(([A-Za-z0-9-~_=%]++\\&{0,1})+)

5、正则表达式的优化

正则表达式带来的性能问题,给我敲了个警钟,在这里我也希望分享给你一些心得。任何一个细节问题,都有可能导致性能问题,而这背后折射出来的是我们对这项技术的了解不够透彻。所以我鼓励你学习性能调优,要掌握方法论,学会透过现象看本质。下面我就总结几种正则表达式的优化方法给你。

5.1、少用贪婪模式,多用独占模式

贪婪模式会引起回溯问题,我们可以使用独占模式来避免回溯。前面详解过了,这里我就不再解释了。

5.2、减少分支选择

分支选择类型“(X|Y|Z)”的正则表达式会降低性能,我们在开发的时候要尽量减少使用。如果一定要用,我们可以通过以下几种方式来优化:

首先,我们需要考虑选择的顺序,将比较常用的选择项放在前面,使它们可以较快地被匹配;

其次,我们可以尝试提取共用模式,例如,将“(abcd|abef)”替换为“ab(cd|ef)”,后者匹配速度较快,因为 NFA 自动机会尝试匹配 ab,如果没有找到,就不会再尝试任何选项;

最后,如果是简单的分支选择类型,我们可以用三次 index 代替“(X|Y|Z)”,如果测试的话,你就会发现三次 index 的效率要比“(X|Y|Z)”高出一些。

5.3、减少捕获嵌套

在讲这个方法之前,我先简单介绍下什么是捕获组和非捕获组。

捕获组是指把正则表达式中,子表达式匹配的内容保存到以数字编号或显式命名的数组中,方便后面引用。一般一个 () 就是一个捕获组,捕获组可以进行嵌套。

非捕获组则是指参与匹配却不进行分组编号的捕获组,其表达式一般由(?:exp)组成。

在正则表达式中,每个捕获组都有一个编号,编号 0 代表整个匹配到的内容。我们可以看下面的例子:

public static void main( String[] args )
{
	String text = "<input high=\"20\" weight=\"70\">test</input>";
	String reg="(<input.*?>)(.*?)(</input>)";
	Pattern p = Pattern.compile(reg);
	Matcher m = p.matcher(text);
	while(m.find()) {
		System.out.println(m.group(0));// 整个匹配到的内容
		System.out.println(m.group(1));//(<input.*?>)
		System.out.println(m.group(2));//(.*?)
		System.out.println(m.group(3));//(</input>)
	}
}

运行结果:

<input high=\"20\" weight=\"70\">test</input>
<input high=\"20\" weight=\"70\">
test
</input>

如果你并不需要获取某一个分组内的文本,那么就使用非捕获分组。例如,使用“(?:X)”代替“(X)”,我们再看下面的例子:

public static void main( String[] args )
{
	String text = "<input high=\"20\" weight=\"70\">test</input>";
	String reg="(?:<input.*?>)(.*?)(?:</input>)";
	Pattern p = Pattern.compile(reg);
	Matcher m = p.matcher(text);
	while(m.find()) {
		System.out.println(m.group(0));// 整个匹配到的内容
		System.out.println(m.group(1));//(.*?)
	}
}

运行结果:

<input high=\"20\" weight=\"70\">test</input>
test

综上可知:减少不需要获取的分组,可以提高正则表达式的性能。

6、总结

正则表达式虽然小,却有着强大的匹配功能。我们经常用到它,比如,注册页面手机号或邮箱的校验。

但很多时候,我们又会因为它小而忽略它的使用规则,测试用例中又没有覆盖到一些特殊用例,不乏上线就中招的情况发生。

综合我以往的经验来看,如果使用正则表达式能使你的代码简洁方便,那么在做好性能排查的前提下,可以去使用;如果不能,那么正则表达式能不用就不用,以此避免造成更多的性能问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/790643.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

uniapp兼容微信小程序和支付宝小程序遇到的坑

1、支付宝不支持v-show 改为v-if。 2、v-html App端和H5端支持 v-html &#xff0c;微信小程序会被转为 rich-text&#xff0c;其他端不支持 v-html。 解决方法&#xff1a;去插件市场找一个支持跨端的富文本组件。 3、导航栏处有背景色延伸至导航栏外 兼容微信小程序和支…

【装饰器设计模式详解】C/Java/JS/Go/Python/TS不同语言实现

简介 装饰器模式&#xff08;Decorator Pattern&#xff09;是一种结构型设计模式。将对象放入到一个特殊封装的对象中&#xff0c;为这个对象绑定新的行为&#xff0c;具备新的能力&#xff0c;同时又不改变其原有结构。 如果你希望在无需修改代码的情况下即可使用对象&…

《水经注地图服务》发布的卫星影像数据在OpenLayers中调用

OpenLayers是一个用于开发WebGIS客户端的JavaScript包。 OpenLayers 支持的地图来源包括Google Maps、Yahoo、 Map、微软Virtual Earth 等&#xff0c;用户还可以用简单的图片地图作为背景图&#xff0c;与其他的图层在OpenLayers 中进行叠加&#xff0c;在这一方面OpenLayers…

Linux6.15 Docker 私有仓库(harbor)

文章目录 计算机系统5G云计算第四章 LINUX Docker 私有仓库&#xff08;harbor&#xff09;一、搭建本地私有仓库二、Docker--harbor私有仓库部署与管理1.Harbor 简介1&#xff09;什么是Harbor2&#xff09;Harbor的特性3&#xff09;Harbor的构成 2.Harbor 部署1&#xff09;…

〔扩〕C# 调用Python

C# 调用Python 一、安装类库 pythonnet 谨慎使用IronPython&#xff0c;好像默认是2.7&#xff0c;运行部分外部引入的第三方包会报错 二、创建pyd 文件供c#调用 2.1 安装cython pip install cython2.2 准备自己的python文件 HtmlToMD.py import sys import html2text as ht…

电脑微信空间占用简便清理

1、打开电脑版微信、点击左下角的三根横线 2、点击左侧的“设置” 3、弹出层左侧点击“通用设置”->“存储空间管理” 4、点击清理缓存&#xff0c;或者管理 5、点击“管理”后&#xff0c;根据选择的筛选条件&#xff0c;勾线需要清理的&#xff0c;最后点击清理

TextClamp for Vue3.0(Vue3.0的文本展开收起组件)

呦&#xff01;大家好&#xff0c;好久没有更新博客了&#xff0c;最近实现了一个一直想自己完成的一个东西&#xff0c;就是文本的展开收起组件&#xff0c;以前项目需要用到&#xff0c;自己实现一个又太繁琐&#xff0c;所以那个时候都是用的别人的轮子&#xff0c;现在自己…

两种接入微信小程序智能客服对话的方式

微信小程序 此处提供两种接入微信小程序的方式。 方式一&#xff1a;扫码将机器人绑定至指定小程序&#xff0c;通过小程序内的客服组件开启智能对话功能&#xff1b; 方式二&#xff1a;通过小程序插件接入。 方式一&#xff1a;后台扫码绑定 流程示意 效果展示 使用页面…

RPA界面元素定位与操控技术详解-达观数据

RPA 入门介绍 什么是 RPA&#xff1f;RPA 是机器人流程自动化 Robotic Process Automation 的简写。在《智能RPA实战》中&#xff0c;我们这样定义&#xff1a;通过特定的、可模拟人类在计算机界面上进行操作的技术&#xff0c;按照规则自动执行相应的流程任务&#xff0c;代替…

代码随想录额外题目| 数组03 ●34排序数组查首尾位置 ●922按奇偶排序数组II●35搜索插入位置

#34排序数组查首尾位置 medium&#xff0c;我写的:1 暴力 vector<int> searchRange(vector<int>& nums, int target) {int start-1;int end-1;for(int i0;i<nums.size();i){if(nums[i]target && start-1) starti;if(nums[i]target && sta…

Photoshop-Beta智能版ps安装教程

Photoshop-Beta智能版ps安装教程 获取方式 安装包工具&#xff0c;关注公众号搜索 荷逸云&#xff0c;发送关键词&#xff1a;ps&#xff0c;即可获得 安装教程 0&#xff1a;注意事项 注意&#xff1a;安装此工具需要魔法上网&#xff0c;获取魔法方式&#xff1a; http…

工业以太网的发展历程与应用前景

工业以太网是在工业自动化和物联网领域广泛使用的通信网络&#xff0c;它具有应用广泛、价格低廉、通信速率高、软硬件产品丰富、应用支持技术成熟等优点&#xff0c;目前它已经在工业企业综合自动化系统中的资源管理层、执行制造层得到了广泛应用&#xff0c;并呈现向下延伸直…

数据结构和算法二(基础查找问题)

一、列表查找&#xff1a; index()&#xff0c;是线性查找&#xff0c;因为二分查找需要进行排序 1、顺序查找 def linear_search(data_set,value):for ind,val in enumerate(data_set):if valvalue:return indelse:return时间复杂度O(n)&#xff0c;从头到尾循环一遍 2、二分…

LED像素间距是什么?

像素间距是指LED显示屏上像素&#xff08;LED晶元&#xff09;之间的距离&#xff0c;也称为点间距&#xff0c;它与显示屏的分辨率相关。具体来说&#xff0c;它描述的是从某一像素的中心到相邻像素中心的距离&#xff0c;单位通常为毫米。像素间距的大小反映了两个像素之间的…

Rancher 加入集群

一、设置rancher为中文界面 1、点击右上角图标--》preferences 2、切换语言&#xff1a;默认为英文&#xff0c;切换成简体中文即可 3、切换成中文后的界面 二、导入K3S集群 1、点击导入已有集群 2、选择集群--》通用 3、输入集群的名字--》创建 4、根据下面的提示&#xff0…

PostgreSQL 查询json/jsonb是否存在某个片段

文章目录 前言实现实现思路坑1坑2坑3 恍然大悟 前言 在PostgreSQL中&#xff0c;jsonb有额外的操作符&#xff0c;如 >、<、?、?|、?& 可以用来查询是否包含路径/值&#xff0c;以及顶层键值是否存在。 详细文章&#xff1a;PostgreSQL 操作json/jsonb 那么&am…

python软件包检索办法--[推荐]

一、官方包管理网站 https://pypi.org/ 二、官网地址 官方源地址: https://pypi.org/simple 中文&#xff1a; https://pypi.com.cn/ PyPI中文网 可以参考&#xff0c;偏慢&#xff01; 三、国内源头 # 清华源 pip config set global.index-url https://pypi.tuna.tsinghua.…

【学会动态规划】礼物的最大价值(12)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

redis在linux系统安装

redis在linux系统安装&#xff1a; 1.下载压缩包 .tar.gz 2.文件安装到/opt mv .tar.gz /opt 解压文件 tar -zxvf .tar.gz 3.安装基本c环境//yum install gcc-c &#xff08;gcc -v 查看c版本&#xff09; 4.make 命令 加载环境&#xff08;make结束多src文件&#xff09;make之…

10.函数

10.1为什么需要函数 ●函数: function&#xff0c;是被设计为 执行特定任务的代码块 ●作用&#xff1a; 精简代码方便复用&#xff08;实现代码复用&#xff0c;提高开发效率&#xff09; 比如我们前面使用的alert()、prompt() 和console.log()都是一些js函数&#xff0c;只不…