【数据挖掘】使用 LSTM 进行时间和序列预测

news2025/1/9 16:17:38

一、说明

        每天,人类在执行诸如过马路之类的任务时都会做出被动预测,他们估计汽车的速度和与汽车的距离,或者通过猜测球的速度并相应地定位手来接球。这些技能是通过经验和实践获得的。然而,由于涉及众多变量,预测天气或经济等复杂现象可能很困难。在这种情况下使用时间和序列预测,依靠历史数据和数学模型对未来趋势和模式进行预测。在本文中,我们将看到使用航空公司数据集使用数学概念进行预测的示例。

 

二、第1部分:

2.1 数学概念

        在本文使用的时间序列预测算法的上下文中,该算法不是手动计算线的斜率和截距,而是使用具有 LSTM 层的神经网络来学习时间序列数据中的基础模式和关系。神经网络在一部分数据上进行训练,然后用于对剩余部分进行预测。在该算法中,下一个时间步长的预测基于前面n_inputs的时间步长,类似于线性回归示例中使用 y(t) 预测 y(T+1) 的概念。但是,该算法中的预测不是使用简单的线性方程,而是使用 LSTM 层的激活函数生成的。激活函数允许模型捕获数据中的非线性关系,使其更有效地捕获时间序列数据中的复杂模式。

2.2 激活功能

摄影:@learnwithutsav

        LSTM 模型中使用的激活函数是整流线性单元 (ReLU) 激活函数。这种激活函数通常用于深度学习模型,因为它在处理梯度消失问题方面简单有效。在 LSTM 模型中,ReLU 激活函数应用于每个 LSTM 单元的输出,以在模型中引入非线性,并允许它学习数据中的复杂模式。ReLU 函数具有简单的阈值行为,其中任何负输入都映射到零,任何正输入都保持不变地通过,从而使其计算效率高。

三、第 2 部分:

3.1 实施

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_csv('airline-passengers.csv', index_col='Month', parse_dates=True)
df.index.freq = 'MS'
df.shape
df.columns
plt.figure(figsize=(20, 4))
plt.plot(df.Passengers, linewidth=2)
plt.show()

        该代码导入了三个重要的库:numpy、pandas 和 matplotlib。熊猫库用于读取“航空公司乘客.csv”文件,并将“月”列设置为索引,从而允许随时间分析数据。然后,该代码使用 matplotlib 库创建一个线图,显示一段时间内的航空公司乘客数量。最后,使用“plt.show”功能显示绘图。此代码对于任何对分析时序数据感兴趣的人都很有用,它演示了如何使用 pandas 和 matplotlib 来可视化数据趋势。

nobs = 12
df_train = df.iloc[:-nobs]
df_test = df.iloc[-nobs:]
df_train.shape
df_test.shape

        此代码通过将现有时间序列数据帧“df”拆分为训练集和测试集来创建两个新的数据帧“df_train”和“df_test”。“nobs”变量设置为 12,这意味着“df”的最后 12 个观测值将用于测试,而其余数据将用于训练。训练集存储在“df_train”中,由“df”中除最后12行以外的所有行组成,而测试集存储在“df_test”中,仅由“df”的最后12行组成。然后使用“shape”属性打印每个数据框中的行数和列数,从而确认拆分正确完成。此代码通过将时序数据拆分为两组,可用于准备用于建模和测试目的的时序数据。

3.2 模型架构

图片来源:@learnwithutsav

from keras.preprocessing.sequence import TimeseriesGenerator
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(df_train)
scaled_train = scaler.transform(df_train)
scaled_test = scaler.transform(df_test)
n_inputs = 12
n_features = 1
generator = TimeseriesGenerator(scaled_train, scaled_train, length = n_inputs, batch_size =1)

for i in range(len(generator)):
    X, y = generator[i]
    print(f' \n {X.flatten()} and {y}')

        此代码片段演示了如何使用 Keras 的“TimeseriesGenerator”类和 scikit-learn 的“MinMaxScaler”类为时间序列预测模型生成输入和输出数组。代码首先创建“MinMaxScaler”类的实例,并将其拟合到训练数据集(“df_train”),以便缩放数据。然后将缩放后的数据存储在“scaled_train”和“scaled_test”数据框中。时间步长数 ('n_inputs“) 设置为 12,要素数 ('n_features') 设置为 1。使用“scaled_train”数据创建“TimeseriesGenerator”对象,窗口长度为“n_inputs”,批大小为 1。最后,循环用于迭代“生成器”对象并打印出每个时间步的输入和输出数组。“X”和“y”变量分别表示每个时间步长的输入和输出数组。“flatten()”方法用于将输入数组转换为一维数组,以便于打印。总体而言,此代码对于准备使用滑动窗口方法预测模型的时间序列数据非常有用。

X.shape

此代码返回数组或矩阵“X”的形状。“shape”属性是 NumPy 数组的一个属性,并返回一个表示数组维度的元组。该代码没有提供任何其他上下文,因此不清楚“X”的形状是什么。输出将采用以下格式(行、列)。

from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM

model = Sequential()
model.add(LSTM(200, activation='relu', input_shape = (n_inputs, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

model.summary()

        此代码演示如何使用 Keras 创建用于时间序列预测的 LSTM 神经网络模型。首先,导入必要的 Keras 类,包括“顺序”、“密集”和“LSTM”。该模型被创建为“顺序”对象,并添加了一个包含 200 个神经元、“relu”激活函数以及由“n_inputs”和“n_features”定义的输入形状的 LSTM 层。然后将 LSTM 层输出传递到具有单个输出神经元的“密集”层。该模型使用“adam”优化器和均方误差(“mse”)损失函数进行编译。'summary()' 方法用于显示架构的摘要,包括参数的数量以及每层输入和输出张量的形状。此代码可用于创建用于时间序列预测的 LSTM 模型,因为它提供了一个易于遵循的示例,可以适应不同的数据集和预测问题。

3.3 训练阶段

model.fit(generator, epochs = 50)

        此代码使用 Keras 中的“fit()”方法训练 LSTM 神经网络模型 50 个 epoch。“TimeseriesGenerator”对象生成成批的输入/输出对,供模型学习。'fit()' 方法使用基于模型编译期间定义的损失函数和优化器的反向传播来更新模型参数。通过训练模型,它学习根据训练数据中学习的模式对新的、看不见的数据进行预测。

plt.plot(model.history.history['loss'])

last_train_batch = scaled_train[-12:]

last_train_batch = last_train_batch.reshape(1, 12, 1)

last_train_batch

model.predict(last_train_batch)

此代码使用经过训练的 LSTM 神经网络模型对新数据点进行预测。从训练数据中选择、缩放并调整为模型的适当格式。在模型上调用“predict()”方法,将重塑的数据作为输入,输出是时间序列中下一个时间步长的预测值。这是使用 LSTM 模型进行时间序列预测的重要步骤。

<span style="background-color:#f9f9f9"><span style="color:#242424">scaled_test[0]</span></span>

此代码打印缩放测试数据数组的第一个元素。“scaled_test”变量是使用“MinMaxScaler”对象转换的测试数据的 NumPy 数组。打印此数组的第一个元素将显示测试数据中第一个时间步长的缩放值。

3.4 预测

y_pred = []

first_batch = scaled_train[-n_inputs:]
current_batch = first_batch.reshape(1, n_inputs, n_features)

for i in range(len(scaled_test)):
    batch = current_batch
    pred = model.predict(batch)[0]
    y_pred.append(pred)
    current_batch = np.append(current_batch[:,1:, :], [[pred]], axis = 1)


y_pred


scaled_test

此代码使用经过训练的 LSTM 模型生成测试数据的预测。它使用 for 循环循环遍历缩放测试数据中的每个元素。在每次迭代中,当前批处理用于使用模型的“predict()”方法进行预测。然后将预测值添加到“y_pred”列表中,并更新当前批次。最后,将“y_pred”列表与“scaled_test”数据一起打印,以将预测值与实际值进行比较。此步骤对于评估 LSTM 模型在测试数据上的性能至关重要。

df_test

y_pred_transformed = scaler.inverse_transform(y_pred)

y_pred_transformed = np.round(y_pred_transformed,0)

y_pred_final = y_pred_transformed.astype(int)

y_pred_final

此代码使用 scaler 对象的“inverse_transform()”方法将上一步中生成的预测值转换回原始比例。转换后的值使用 'round()' 函数舍入到最接近的整数,并使用 'astype()' 方法转换为整数。打印生成的预测值数组“y_pred_final”,以显示测试数据的最终预测值。此步骤对于评估 LSTM 模型在数据原始尺度上的预测的准确性非常重要。

df_test.values, y_pred_final

df_test['Predictions'] = y_pred_final

df_test

        上面的代码显示了添加到原始测试数据集的 LSTM 模型生成的预测值。首先,“values”属性用于提取“df_test”数据帧的值,然后将其与预测值“y_pred_final”配对。然后,将一个名为“预测”的新列添加到“df_test”数据帧以存储预测值。最后,使用新添加的“预测”列打印“df_test”数据帧。此步骤对于直观地将测试数据集的实际值与预测值进行比较并评估模型的准确性非常重要。

plt.figure(figsize=(15, 6))
plt.plot(df_train.index, df_train.Passengers, linewidth=2, color='black', label='Train Values')
plt.plot(df_test.index, df_test.Passengers, linewidth=2, color='green', label='True Values')
plt.plot(df_test.index, df_test.Predictions, linewidth=2, color='red', label='Predicted Values')
plt.legend()
plt.show()

此代码块正在使用库生成绘图。它首先设置图形大小,然后将训练数据绘制为黑线,将真实测试值绘制为绿线,将预测的测试值绘制为红线。它还向绘图添加图例,并使用该方法显示图例。matplotlibshow()

3.5均方误差

        均方误差 (MSE) 是回归线与一组点的接近程度的度量。它是通过取预测值和实际值之间的平方差的平均值来计算的。MSE 的平方根称为均方根误差 (RMSE),这是预测准确性的常用度量。在此代码块中,RMSE 是使用模块中的函数和模块 中的函数计算的 。RMSE 用于评估 LSTM 模型预测的准确性与测试集中的真实值相比。mean_squared_errorsklearn.metricssqrtmath

from sklearn.metrics import mean_squared_error
from math import sqrt

sqrt(mean_squared_error(df_test.Passengers, df_test.Predictions))

        此代码计算测试集中的实际乘客值 () 与预测乘客值 () 之间的均方根误差 (RMSE)。RMSE 是评估回归模型性能的常用指标。它测量预测值和实际值之间的平均距离,同时考虑它们之间差值的平方。RMSE 是一个有用的指标,因为它对大误差的惩罚比小误差更严重,使其成为模型预测整体准确性的良好指标。df_test.Passengersdf_test.Predictions

        总之,我们在 Keras 中使用 LSTM 算法实现了时间序列预测模型。我们在每月航空公司乘客数据集上训练了模型,并使用它来预测未来 12 个月。该模型表现良好,均方根误差为 30.5。真实值、预测值和训练值的可视化表明,该模型能够捕获数据中的总体趋势和季节性。这证明了 LSTM 在捕获时间序列数据中复杂时间关系方面的强大功能及其进行准确预测的潜力。

四、结论

        本文示例是一个典型的时间序列处理办法,可以当作经典来用。读者可以多花一些时间消化该案例;事实表明,用LSTM这种工具不仅可以处理NLP,而且可以针对任何的时间序列,比如股票预测。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/789006.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络安全 Day19-计算机网络基础知识04(网络协议)

计算机网络基础知识04&#xff08;网络协议&#xff09; 1. ARP1.1 ARP通讯原理1.2 arp欺骗1.3 ARP欺骗与预防1.4 排查ARP病毒 2. DHCP工作原理&#xff08;自动分配内网IP&#xff09;3. TCP协议三次握手、四次挥手原理4. DNS协议工作原理 1. ARP Linux查看arp&#xff1a;ar…

12.Netty源码之整体架构脉络

Netty 整体架构脉络 Netty 的逻辑处理架构为典型网络分层架构设计&#xff0c;共分为网络通信层、事件调度层、服务编排层&#xff0c;每一层各司其职。 网络通信层 网络通信层的职责是执行网络 I/O 的操作。它支持多种网络协议和 I/O 模型的连接操作。当网络数据读取到内核缓冲…

一分钟叫你怎样AI绘画 Vega Ai

先看效果图&#xff1a; 是不是也想自己去创造这样的图片呢&#xff0c;注意已经不需要自己画了&#xff01;&#xff01; Vega AI 简介 Vega AI是一款能够 文字生成图片、根据图片文字进行生成图片、条件生成图片 、根据多张图片训练出自己的风格&#xff0c;在风格广场选择…

使用 OpenCV 和 GrabCut 算法进行交互式背景去除

一、说明 我想&#xff0c;任何人都可以尝试从图像中删除背景。当然&#xff0c;有大量可用的软件或工具能够做到这一点&#xff0c;但其中一些可能很昂贵。但是&#xff0c;我知道有人使用窗口绘画3D魔术选择或PowerPoint背景去除来删除背景。 如果您是计算机视觉领域的初学者…

Linux系统知识1—Linux命令基础格式,什么是命令,命令行,ls命令入门,ls命令的参数和选项,-a,-l -h选项的使用及组合使用

一.什么是命令&#xff0c;命令行 &#xff0e;命令行&#xff1a;即 Linux 终端&#xff08; Terminal )&#xff0c;是一种命令提示符页面。以纯"字符"的形式操作系统&#xff0c;可以使用各种字符化命令对系统发出操作指令。 &#xff0e;命令&#xff1a;即 Lin…

【LangChain】检索器之上下文压缩

LangChain学习文档 【LangChain】检索器(Retrievers)【LangChain】检索器之MultiQueryRetriever【LangChain】检索器之上下文压缩 上下文压缩 LangChain学习文档 概要内容使用普通向量存储检索器使用 LLMChainExtractor 添加上下文压缩(Adding contextual compression with an…

数据结构基本概念及算法分析

文章目录 1. 数据结构基本概念1.1 基本概念和术语1.1.1 数据1.1.2 数据元素1.1.3 数据项1.1.4 数据对象1.1.5 数据结构 1.2 逻辑结构与物理结构1.2.1 逻辑结构(我们最需要关注的问题)1.2.2 物理机构 1.3 数据类型1.3.1 数据类型定义1.3.2 抽象数据类型 2. 算法分析2.1 算法的复…

【Python机器学习】实验02 线性回归

文章目录 线性回归1. 单变量的线性回归1.1 数据读取1.2 训练数据的准备1.3 假设函数定义--假设函数是为了去预测1.4 损失函数的定义1.5 利用梯度下降算法来优化参数w1.6 可视化误差曲线1.7 可视化回归线/回归平面 1.2 单变量的线性回归--基于sklearn试试&#xff1f;1.3 多变量…

object tracking论文代码汇总

文章目录 2023Segment and Track AnythingTrack Anything: Segment Anything Meets VideosSAM-DA: UAV Tracks Anything at Night with SAM-Powered Domain Adaptation 2023 Segment and Track Anything code&#xff1a;https://github.com/z-x-yang/Segment-and-Track-Anyt…

响应式赋值Object.assign()和JSON.parse(JSON.stringify())的区别

一、需求&#xff1a;点击编辑弹出编辑框&#xff0c;修改后的内容点击认按钮修改后的数据更新回显到原列表。今天优化代码的时候发现了Object.assign()和JSON.parse(JSON.stringify())的区别。 优化前代码如下&#xff1a; // 编辑药品回显editMedicData(data) {this.table…

会员系统怎么搭建,适合门店的会员系统有哪些?

会员系统是一种为企业和门店提供会员管理和服务的工具。会员系统可以通过提供专属优惠、积分奖励、个性化推荐等方式&#xff0c;激励顾客成为会员并保持长期关系。 我们在自己搭建或选择会员系统时&#xff0c;需要考虑门店的特定需求以及系统的功能、可靠性、易用性和成本等因…

github前端开源json2html

软件介绍 前端低代码工具包&#xff0c;通过 JSON 配置就能生成各种页面。 应用场景 json解析超大数据动态渲染&#xff0c;渲染速度、性能解决问题 包引用列表 vue3 (cdn模式开发)element plusnodehttp-serveraxios 操作步骤 1.环境准备下载node&#xff1a;https://no…

长tree用buffer还是inverter?驱动强度如何选型?

相关文章链接: 静态时序分析: 最小脉冲宽度检查 redhawk:clock buffer cluster 面试中关于CTS buf/inv选型的问题经久不衰,依托经验,不看纸面信息,inverter和buffer各有优劣,同驱动buffer实际推力更强,意味着只用buffer,clock repeater数量更少,inverter必须成对的…

从零开始搭建医药领域知识图谱实现智能问答与分析服务(含码源):含Neo4j基于垂直网站数据的医药知识图谱构建、医药知识图谱的自动问答等

项目设计集合&#xff08;人工智能方向&#xff09;&#xff1a;助力新人快速实战掌握技能、自主完成项目设计升级&#xff0c;提升自身的硬实力&#xff08;不仅限NLP、知识图谱、计算机视觉等领域&#xff09;&#xff1a;汇总有意义的项目设计集合&#xff0c;助力新人快速实…

抖音seo矩阵系统源码保姆式开发部署指导

抖音seo霸屏&#xff0c;是一种专为抖音视频创作者和传播者打造的视频批量剪辑&#xff0c;批量分发产品。使用抖音seo霸屏软件&#xff0c;可以帮助用户快速高效的制作出高质量的优质视频。 使用方法&#xff1a;1. 了解用户的行为习惯 2. 充分利用自身资源进行开发 3. 不…

超全整理,selenium自动化测试常见问题解决(汇总)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 自动化代码中&…

静态路由小实验

文章目录 一、实验要求及拓扑图二、实验步骤三、思考题 一、实验要求及拓扑图 二、实验步骤 1、创建VLAN&#xff0c;将端口划入vlan 在交换机S3、S4上创建VLAN10、20 Switch(config)#vl 10 Switch(config-vlan)#vl 20 S3(config)#int f0/3 S3(config-if)#switchport access …

SpringBoot中使用测试框架MockMvc来模拟HTTP请求测试Controller接口

场景 Java中进行单元测试junit.Assert断言、Mockito模拟对象、verify验证模拟结果、Java8中lambda的peek方法使用&#xff1a; Java中进行单元测试junit.Assert断言、Mockito模拟对象、verify验证模拟结果、Java8中lambda的peek方法使用_assert java8_霸道流氓气质的博客-CSD…

17的勒索软件攻击泄露关键OT信息

数据泄漏一直是企业关注的问题&#xff0c;敏感信息泄露可能导致声誉受损、法律处罚、知识产权损失、甚至影响员工和客户的隐私。然而很少有关于工业企业面临的威胁行为者披露其OT安全、生产、运营或技术的敏感细节的研究。 2021年&#xff0c;Mandiant威胁情报研究发现&#…

ambari管理配置组实现针对不同节点使用不同配置

实操 一.新建配置组&#xff1a; 二.取名后指定该配置组针对哪些节点生效&#xff1a; 三.添加节点&#xff1a; 保存后有个空的配置组newMR2. 四.接下来在该配置组内自定义一些配置参数&#xff0c;比如单独针对节点hdp01配置fetch最高并发度为20&#xff1a; 五.重…