多态
多态的基本概念
多态是C++面向对象三大特性之一
多态分为两类
1、静态多态:函数重载 和 运算符重载属于静态多态,复用函数名
2、动态多态:派生类和虚函数实现运行时多态
静态多态和动态多态的区别:
1、静态多态的函数地址早绑定 - 编译阶段确定函数地址
2、动态多态的函数地址晚绑定 - 运行阶段确定函数地址
#include<iostream>
using namespace std;
//动物类
class Animal
{
public:
//虚函数
virtual void speak()
{
cout << "动物在说话" << endl;
}
};
//猫类
class Cat :public Animal
{
public:
//重写 函数返回值类型 函数名 参数列表要完全相同
void speak()
{
cout << "小猫在说话" << endl;
}
};
//狗类
class Dog :public Animal
{
public:
void speak()
{
cout << "小狗在说话" << endl;
}
};
//执行说话的函数
//地址早绑定 在编译阶段确定函数地址
//如果想执行让猫说话,那么这个函数地址就不能提前绑定,需要在运行阶段进行绑定,地址晚绑定
//动态多态满足条件
//1、有继承关系
//2、子类重写父类的虚函数
//动态多态的使用
//父类的指针或者引用 执行子类对象
void doSpeak(Animal &animal)//Animal & animal = cat
{
animal.speak();
}
void test01()
{
Cat cat;
doSpeak(cat);
Dog dog;
doSpeak(dog);
}
int main()
{
test01();
return 0;
}
总结:
多态满足条件:
1、有继承关系
2、子类重写父类中的虚函数
多态使用条件:
父类指针或引用指向子类对象
重写:函数返回值类型 函数名 参数列表 完全一致称为重写
案例:计算器类
案例描述:
分别利用普通写法和多态技术,设计实现两个操作数进行运算的计算器类
多态的优点:
1、代码组织结构清晰
2、可读性强
3、利于前期和后期的扩展以及维护
#include<iostream>
using namespace std;
#include<string>
//分别利用普通写法和多态技术实现计算器
//普通写法
class Calculator
{
public:
int getResult(string oper)
{
if (oper == "+")
{
return m_Num1 + m_Num2;
}
else if (oper == "-")
{
return m_Num1 - m_Num2;
}
else if (oper == "*")
{
return m_Num1 * m_Num2;
}
//如果想扩展新的功能,需要修改源码
//在真实开发中 提倡 开闭原则
//开闭原则:对扩展进行开放,对修改进行关闭
}
int m_Num1; //操作数1
int m_Num2; //操作数2
};
void test01()
{
//创建计算器对象
Calculator c;
c.m_Num1 = 10;
c.m_Num2 = 10;
cout << c.m_Num1 << "+" << c.m_Num2 << "=" << c.getResult("+") << endl;
cout << c.m_Num1 << "-" << c.m_Num2 << "=" << c.getResult("-") << endl;
cout << c.m_Num1 << "*" << c.m_Num2 << "=" << c.getResult("*") << endl;
}
//利用多态实现计算器
//多态好处:
//1、组织结构清晰
//2、可读性强
//3、对于前期和后期扩展以及维护性高
//实现计算器抽象类
class AbstractCalculator
{
public:
virtual int getResult()
{
return 0;
}
int m_Num1;
int m_Num2;
};
//加法计算器类
class AddCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 + m_Num2;
}
};
//减法计算器类
class SubCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 - m_Num2;
}
};
//乘法计算器类
class MulCalculator :public AbstractCalculator
{
public:
int getResult()
{
return m_Num1 * m_Num2;
}
};
void test02()
{
//多态使用条件
//父类指针或者引用指向子类对象
AbstractCalculator* abc = new AddCalculator;
abc->m_Num1 = 100;
abc->m_Num2 = 100;
cout << abc->m_Num1 << "+" << abc->m_Num2 << "=" << abc->getResult() << endl;
//用完后记得销毁
delete abc;
abc = new SubCalculator;
abc->m_Num1 = 100;
abc->m_Num2 = 100;
cout << abc->m_Num1 << "-" << abc->m_Num2 << "=" << abc->getResult() << endl;
delete abc;
abc = new MulCalculator;
abc->m_Num1 = 100;
abc->m_Num2 = 100;
cout << abc->m_Num1 << "*" << abc->m_Num2 << "=" << abc->getResult() << endl;
delete abc;
}
int main()
{
//test01();
test02();
return 0;
}
总结:C++开发提倡利用多态设计程序架构,因为多态优点很多
纯虚函数和抽象类
在多态中,通常父类中虚函数的实现是毫无意义的,主要都是调用子类重写的内容
因此可以将虚函数改为纯虚函数
纯虚函数语法:virtual 返回值类型 函数名 (参数列表)=0;
当类中有了纯虚函数,这个类也称为抽象类
抽象类特点:
1、无法实例化对象
2、子类必须重写抽象类中的纯虚函数,否则也属于抽象类
#include<iostream>
using namespace std;
class Base
{
public:
//纯虚函数
//只要有一个纯虚函数,这个类称为抽象类
//抽象类特点:
//1、无法实例化对象
//2、 抽象类的子类 必须重写父类中的纯虚函数,否则也属于抽象类
virtual void func() = 0;
};
class Son:public Base
{
public:
virtual void func()
{
cout << "func函数调用" << endl;
}
};
void test01()
{
//Base* p = new Base;//抽象类是无法实例化对象的
//Base b; //抽象类是无法实例化对象的
Son s; //子类必须重写父类中的纯虚函数,否则无法实例化对象
Base* base = new Son;
base->func();
delete base;
}
int main()
{
test01();
return 0;
}
案例二-制作饮品
案例描述:
制作饮品的大致流程为:煮水-冲泡-倒入水中-加入辅料
利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶
#include<iostream>
using namespace std;
//多态案例2 制作饮品
class AbstractDrinking
{
public:
//煮水
virtual void Boil() = 0;
//冲泡
virtual void Brew() = 0;
//倒入杯中
virtual void PourInCup() = 0;
//加入辅料
virtual void PutSomething() = 0;
void makeDrink()
{
Boil();
Brew();
PourInCup();
PutSomething();
}
};
//制作咖啡
class Coffee :public AbstractDrinking
{
public:
//煮水
virtual void Boil()
{
cout << "煮农夫山泉" << endl;
}
//冲泡
virtual void Brew()
{
cout << "冲泡咖啡" << endl;
}
//倒入杯中
virtual void PourInCup()
{
cout << "倒入陶瓷杯" << endl;
}
//加入辅料
virtual void PutSomething()
{
cout << "加入糖和牛奶" << endl;
}
};
//制作茶叶
class Tea :public AbstractDrinking
{
public:
//煮水
virtual void Boil()
{
cout << "煮怡宝" << endl;
}
//冲泡
virtual void Brew()
{
cout << "冲泡茶叶" << endl;
}
//倒入杯中
virtual void PourInCup()
{
cout << "倒入玻璃杯" << endl;
}
//加入辅料
virtual void PutSomething()
{
cout << "加入柠檬" << endl;
}
};
//制作
void doWork(AbstractDrinking* abs)
{
abs->makeDrink();
if (abs != NULL)
{
delete abs;
}
}
void test01()
{
//制作咖啡
doWork(new Coffee);
cout << "-----------------" << endl;
//制作茶叶
doWork(new Tea);
}
int main()
{
test01();
return 0;
}
虚析构和纯虚析构
多态使用时,如果子类中有属性开辟到堆区,那么父类指针在释放时无法调用到子类的析构代码
解决方法:将父类中的析构函数改为虚析构或者纯虚析构
虚析构和纯虚析构共性:
1、可以解决父类指针释放子类对象
2、都需要有具体的函数实现
虚析构和纯虚析构的区别:
如果是纯虚析构,该类属于抽象类,无法实例化对象
虚析构语法:
virtual ~类名(){}
纯虚析构语法:
virtual ~类名()=0;
类名::~类名(){}
#include<iostream>
using namespace std;
#include<string>
//虚析构和纯虚析构
class Animal
{
public:
Animal()
{
cout<<"Animal构造函数调用" << endl;
}
//利用虚析构可以解决 父类指针释放子类对象时不干净的问题
//virtual ~Animal()
//{
// cout << "Animal虚析构函数调用" << endl;
//}
//纯虚析构 需要声明也需要实现
//有了纯虚析构之后,这个类也属于抽象类,无法实例化对象
virtual ~Animal() = 0;
//纯虚函数
virtual void speak() = 0;
};
Animal::~Animal()
{
cout << "Animal纯虚析构函数调用" << endl;
}
class Cat :public Animal
{
public:
Cat(string name)
{
cout << "Cat构造函数调用" << endl;
m_Name = new string(name);
}
virtual void speak()
{
cout << *m_Name << "小猫在说话" << endl;
}
~Cat()
{
if (m_Name != NULL)
{
cout << "Cat析构函数调用" << endl;
delete m_Name;
m_Name = NULL;
}
}
string* m_Name;
};
void test01()
{
Animal* animal = new Cat("Tom");
animal->speak();
//父类指针在析构的时候 不会调用子类中析构函数,导致子类如果有堆区属性,出现内存泄漏
delete animal;
}
int main()
{
test01();
return 0;
}
总结:
1、虚析构或纯虚析构就是用来解决通过父类指针释放子类对象
2、如果子类中没有堆区数据,可以不写为虚析构或纯虚析构
3、拥有纯虚析构函数的类也属于抽象类
案例3:电脑组装
案例描述:
电脑主要组成部件为CPU,显卡,内存条
将每个零件封装出抽象基类,并且提供不同的厂商生产不同的零件
创建电脑类提供让电脑工作的函数,并且调用每个零件工作的接口
测试时组装三台不同的电脑进行工作
黑马程序员教学视频截图
#include<iostream>
using namespace std;
//抽象不同零件类
//抽象CPU类
class CPU
{
public:
//抽象的计算函数
virtual void calculate() = 0;
};
//抽象显卡类
class VideoCard
{
public:
//抽象的计算函数
virtual void display() = 0;
};
//抽象内存条类
class Memory
{
public:
//抽象的存储函数
virtual void storage() = 0;
};
//电脑类
class Computer
{
public:
Computer(CPU* cpu, VideoCard* vc, Memory* mem)
{
m_cpu = cpu;
m_vc = vc;
m_mem = mem;
}
//提供工作的函数
void work()
{
//让零件工作起来,调用接口
m_cpu->calculate();
m_vc->display();
m_mem->storage();
}
//提供析构函数 释放3个电脑零件
~Computer()
{
if (m_cpu != NULL)
{
delete m_cpu;
m_cpu = NULL;
}
if (m_vc != NULL)
{
delete m_vc;
m_vc = NULL;
}
if (m_mem != NULL)
{
delete m_mem;
m_mem = NULL;
}
}
private:
CPU* m_cpu;
VideoCard* m_vc;
Memory* m_mem;
};
//具体厂商
//Intel厂商
class IntelCPU :public CPU
{
public:
virtual void calculate()
{
cout << "Intel的CPU开始计算了!" << endl;
}
};
class IntelVideoCard :public VideoCard
{
public:
virtual void display()
{
cout << "Intel的显卡开始显示了!" << endl;
}
};
class IntelMemory :public Memory
{
public:
virtual void storage()
{
cout << "Intel的内存条开始存储了!" << endl;
}
};
//Lenovo厂商
class LenovoCPU :public CPU
{
public:
void calculate()
{
cout << "Lenovo的CPU开始计算了!" << endl;
}
};
class LenovoVideoCard :public VideoCard
{
public:
void display()
{
cout << "Lenovo的显卡开始显示了!" << endl;
}
};
class LenovoMemory :public Memory
{
public:
void storage()
{
cout << "Lenovo的内存条开始存储了!" << endl;
}
};
void test01()
{
//第一台电脑零件
CPU* intelCpu = new IntelCPU;
VideoCard* intelCard = new IntelVideoCard;
Memory* intelMem = new IntelMemory;
//创建第一台电脑
Computer* computer1 = new Computer(intelCpu, intelCard, intelMem);
computer1->work();
delete computer1;
}
void test02()
{
//第二台电脑零件
CPU* lenovoCpu = new LenovoCPU;
VideoCard* lenovoCard = new LenovoVideoCard;
Memory* lenovoMem = new LenovoMemory;
//创建第一台电脑
Computer* computer2 = new Computer(lenovoCpu, lenovoCard, lenovoMem);
computer2->work();
delete computer2;
}
void test03()
{
//第三台电脑零件
CPU* lenovoCpu = new LenovoCPU;
VideoCard* intelCard = new IntelVideoCard;
Memory* lenovoMem = new LenovoMemory;
//创建第一台电脑
Computer* computer2 = new Computer(lenovoCpu, intelCard, lenovoMem);
computer2->work();
delete computer2;
}
int main()
{
test01();
test02();
test03();
return 0;
}