GaussDB火焰图分析

news2025/1/12 1:06:18

目录

  • 问题描述
  • 问题现象
  • 告警
  • 业务影响
  • 原因分析
  • 处理方法

问题描述

CPU利用率是衡量系统负载和健康度的重要指标之一,系统在运行过程中时常发生CPU利用率高的情况。在分析性能问题时,可通过火焰图查看CPU耗时,了解瓶颈在哪里。

问题现象

部分sql执行速度不符合预期。

告警

  • 慢sql告警。
  • cpu使用率高告警。
  • 数据库整体运行慢。

业务影响

业务性能差。

原因分析

函数存在性能问题。

处理方法

所需工具:stackcollapse-perf.pl、flamegraph.pl。注意权限修改。

  1. 登录主DN节点,查看耗CPU高的进程,查看进程号。

    top
    

    在这里插入图片描述
    参数说明:

    • %us (usr/user):用户空间占用CPU的百分比。
    • %sy (system):内核空间占用CPU的百分比。
    • %ni (nice):改变过优先级的进程占用CPU的百分比。
    • %id (idle):空闲CPU百分比。
    • %wa (iowait):IO等待占用CPU的百分比(实际CPU并未工作)。
    • %hi (hardware interrupts):硬中断(Hardware IRQ)占用CPU的百分比。
    • %si (software interrupts):软中断(Software Interrupts)占用CPU的百分比。
    • %st (steal):Hypervisor偷取的CPU的百分比。
  2. 执行perf 命令(performance 的缩写),它是 Linux 系统原生提供的性能分析工具,会返回 CPU 正在执行的函数名以及调用栈(stack)。
    通常,它的执行频率是 99Hz(每秒99次),如果99次都返回同一个函数名,那就说明 CPU 这一秒钟都在执行同一个函数,可能存在性能问题。

    perf record -e cpu-clock -g -p 28591 <主DN进程号> -- sleep 60<持续60s>
    

    Ctrl+c结束执行后,在当前目录下会生成采样数据perf.data(执行时长1分钟即可)。

  3. 用perf script工具对perf.data进行解析:

    perf script -i perf.data &> perf.unfold
    
  4. 将perf.unfold中的符号进行折叠:

    ./stackcollapse-perf.pl perf.unfold &> perf.folded
    
  5. 最后生成svg图:

    ./flamegraph.pl perf.folded > cn.svg
    

    在这里插入图片描述
    y 轴表示调用栈,每一层都是一个函数。调用栈越深,火焰就越高,顶部就是正在执行的函数,下方都是它的父函数。
    x 轴表示抽样数,如果一个函数在 x 轴占据的宽度越宽,就表示它被抽到的次数多,即执行的时间长。注意,x 轴不代表时间,而是所有的调用栈合并后,按字母顺序排列的。
    火焰图就是看顶层的哪个函数占据的宽度最大。只要有"平顶"(plateaus),就表示该函数可能存在性能问题。
    颜色没有特殊含义,因为火焰图表示的是 CPU 的繁忙程度,所以一般选择暖色调。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/751653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

6.溢出的文字省略号显示

6.1单行文本溢出显示省略号 必须满足三个条件 /*1. 先强制一行内显示文本*/ white-space: nowrap; &#xff08; 默认 normal 自动换行&#xff09; /*2. 超出的部分隐藏*/ overflow: hidden; /*3. 文字用省略号替代超出的部分*/ text-overflow: ellipsis;【示例代码】 <…

在Excel电子表格中用公式实现最最简易的标签套打

每月要为单位新入职员工打印标签贴纸&#xff0c;贴于档案之上&#xff0c;之前是用Excel建立一张表&#xff0c;通过拖动单元格大小&#xff0c;调整文本位置&#xff0c;实现标签贴纸的打印功能。 后来&#xff0c;公司每月都会新招入一批员工&#xff0c;每次打印贴纸时&…

Linux学习之变量引用和作用范围

使用${变量名}或者$变量名就可以引用变量&#xff0c;$变量名其实是${变量名}的省略写法。 要是变量名后边还有其他字符就需要加上{}&#xff0c;比如helloToBash这个变量的值是Hello Bash&#xff0c;而需要输出的字符串是“Hello Bashing”&#xff0c;这样就需要加上{}&…

青岛大学_王卓老师【数据结构与算法】Week05_07_顺序栈的操作1_学习笔记

本文是个人学习笔记&#xff0c;素材来自青岛大学王卓老师的教学视频。 一方面用于学习记录与分享&#xff0c; 另一方面是想让更多的人看到这么好的《数据结构与算法》的学习视频。 如有侵权&#xff0c;请留言作删文处理。 课程视频链接&#xff1a; 数据结构与算法基础…

Config分布式配置中心(在Spring Cloud整合Config(idea19版本))

应用场景 1.集中配置管理(一处修改,处处生效) 2.不同环境不同配置(开发dev,测试test,生产prod) 3.运行期间可动态调整 4.如果配置内容发生变化,微服务可以自动更新配置 分布式配置管理 Server:提供配置文件的存储、以接口的形式将配置文件的内容提供出去&a…

如何将 OpenTelemetry 检测与 Elastic APM Agent 功能相结合

作者&#xff1a;Greg Kalapos Elastic APM 在多个级别支持 OpenTelemetry。 我们之前在博客中介绍过的一种易于理解的场景是 APM 服务器中的直接开放遥测协议 (OTLP) 支持。 这意味着你可以将任何 OpenTelemetry 代理连接到 Elastic APM 服务器&#xff0c;APM 服务器会很乐意…

模拟高清1路RX—XS9950,可替代TP9950

1通道模拟高清复合视频解码芯片可替代TP9950&#xff0c;兼容CVI、AHD、TVI和CVBS&#xff0c;最高支持 1 路1080p30fps&#xff0c;同时支持音频接入&#xff1b;支持BT656和MIPI输出&#xff0c;包含 AFE、EQ 和 ADC&#xff0c;AFE支持通道带宽、输入信号增益可调节&#xf…

二维码生成器简单使用

生成器工具类 以下是一个简单的 QRCodeUtil 示例&#xff0c;这个工具类使用了 zxing 库来生成二维码图片&#xff1a; import com.google.zxing.BarcodeFormat; import com.google.zxing.common.BitMatrix; import com.google.zxing.qrcode.QRCodeWriter;import javax.image…

数据可视化分析,2023结婚全品类消费趋势洞察报告

结婚消费与人们的关系密切相关。结婚是一个重要的人生事件&#xff0c;往往伴随着大量的消费。人们倾向于在婚礼仪式、婚纱摄影、宴会等方面进行豪华的投资&#xff0c;以展示社会地位和个人品味。此外&#xff0c;结婚还涉及到婚戒、婚庆、蜜月旅行等费用。然而&#xff0c;随…

基于 NNCF 和 Optimum 面向 Intel CPU 对 Stable Diffusion 优化

&#x1f917; 宝子们可以戳 阅读原文 查看文中所有的外部链接哟&#xff01; 基于隐空间的扩散模型 (Latent Diffusion Model)&#xff0c;是解决文本到图片生成问题上的颠覆者。Stable Diffusion 是最著名的一例&#xff0c;广泛应用在商业和工业。Stable Diffusion 的想法简…

【雕爷学编程】Arduino动手做(149)---MAX9814咪头传感器模块3

37款传感器与执行器的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&am…

2023机器人操作系统(ROS)暑期学校预热-线下时间/地点-(转发)

原文地址&#xff1a; https://mp.weixin.qq.com/s/McjBgCpecL6OMgpcrPyY_Q 中国机器人操作系统&#xff08;ROS&#xff09;暑期学校自2015年举办以来&#xff0c;被中国机器人业界和学界&#xff0c;以及ROS开源基金会誉为除了ROSCon之外规模最大、参与人数最多、最成功的RO…

Redis的4种分布式限流算法

限流 服务系统流量多,的确是一件好事,但是如果过载,把系统打挂了,那大家都要吃席了。 所以,在各种大促活动之前,要对系统进行压测,评估整个系统的峰值QPS,要做一些限流的设置,超过一定阈值,就拒绝处理或者延后处理,避免把系统打挂的情况出现。 限流和熔断有什么区…

ES6、ES7、ES8、ES9、ES10、ES11、ES12都增加了哪些新特性?

摘要&#xff1a; 前端开发的都知道&#xff0c;JavaScript经历了不同标本的迭代&#xff0c;从1到12的不断完善中会添加不同的新特性来解决前一个阶段的瑕疵&#xff0c;让我们开发更加便捷与写法更加简洁&#xff01; 我记得我第一次接触js的时候是从大学的《21天精通JavaScr…

syri软件的安装

目录 1. 下载syri软件 ​2. 其他软件的安装和环境配置 3. plotsr软件的安装 1. 下载syri软件 网址&#xff1a;syri 该软件基于 3.5 版本 python&#xff0c;请提前使用 conda 创建 python 3.5 版本 环境并安装依赖模块 点击 view project on github 点击 9 release 我选择…

Matplotlib入门与实践(一)

Matplotlib 是一个 Python 的 2D绘图库&#xff0c;它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。通过 Matplotlib&#xff0c;开发者可以仅需要几行代码&#xff0c;便可以生成绘图&#xff0c;直方图&#xff0c;功率谱&#xff0c;条形图&#xff0c;错误…

[Docker] Docker镜像管理和操作实践(二) 文末送书

前言&#xff1a; Docker镜像是容器化应用程序的打包和分发单元&#xff0c;包含了应用程序及其所有依赖项&#xff0c;实现了应用程序的可移植性和一致性。 文章目录 使用Dockerfile创建自定义镜像实践练手1. 创建基于ubuntu的自定义镜像&#xff0c;并安装nginx2. 配置Redis容…

React中 Real DOM 和 Virtual DOM 的区别?优缺点?

一、是什么 Real DOM&#xff0c;真实 DOM&#xff0c;意思为文档对象模型&#xff0c;是一个结构化文本的抽象&#xff0c;在页面渲染出的每一个结点都是一个真实 DOM 结构&#xff0c;如下&#xff1a; Virtual Dom&#xff0c;本质上是以 JavaScript 对象形式存在的对 DOM …

mysql索引的简单使用

删除 goods 表中的 goods_desc 字段及货号字段,并增加 click_count 字段 在 goods_name 列上加唯一性索引&#xff08;用alter table方式&#xff09; alter table add unique index uniqididx(goods_name);去查看索引 发现有goods_name的唯一索引 在 shop_price 列上加普通…

视频分类(Classification)和摘要(Captioning)总结

论文&#xff1a;Deep Learning for Video Classification and Captioning 视频分类是指将大量的视频数据按照一定的标准和规则进行分类和归类&#xff0c;以便于用户快速找到自己感兴趣的视频内容。视频分类可以基于不同的特征和属性进行&#xff0c;例如内容主题、风格、语言…