MySQL原理探索——26 备库为什么会延迟好几个小时

news2025/1/16 18:49:52

在上一篇文章中,介绍了几种可能导致备库延迟的原因。你会发现,这些场景里,不论是偶发性的查询压力,还是备份,对备库延迟的影响一般是分钟级的,而且在备库恢复正常以后都能够追上来。
但是,如果备库执行日志的速度持续低于主库生成日志的速度,那这个延迟就有可能成了小时级别。而且对于一个压力持续比较高的主库来说,备库很可能永远都追不上主库的节奏。
这就涉及到今天我要给你介绍的话题:备库并行复制能力。
为了便于你理解,我们再一起看一下第 24 篇文章《MySQL 是怎么保证主备一致的?》的主备流程图。

谈到主备的并行复制能力,我们要关注的是图中黑色的两个箭头。一个箭头代表了客户端写入主库,另一箭头代表的是备库上 sql_thread 执行中转日志(relay log)。如果用箭头的粗细来代表并行度的话,那么真实情况就如图 1 所示,第一个箭头要明显粗于第二个箭头。
在主库上,影响并发度的原因就是各种锁了。由于 InnoDB 引擎支持行锁,除了所有并发事务都在更新同一行(热点行)这种极端场景外,它对业务并发度的支持还是很友好的。所以,你在性能测试的时候会发现,并发压测线程 32 就比单线程时,总体吞吐量高。
而日志在备库上的执行,就是图中备库上 sql_thread 更新数据 (DATA) 的逻辑。如果是用单线程的话,就会导致备库应用日志不够快,造成主备延迟。
在官方的 5.6 版本之前,MySQL 只支持单线程复制,由此在主库并发高、TPS 高时就会出现严重的主备延迟问题。
从单线程复制到最新版本的多线程复制,中间的演化经历了好几个版本。接下来,我就跟你说说 MySQL 多线程复制的演进过程。
其实说到底,所有的多线程复制机制,都是要把图 1 中只有一个线程的 sql_thread,拆成多个线程,也就是都符合下面的这个模型: 

图 2 中,coordinator 就是原来的 sql_thread, 不过现在它不再直接更新数据了,只负责读取中转日志和分发事务。真正更新日志的,变成了 worker 线程。而 work 线程的个数,就是由参数 slave_parallel_workers 决定的。根据我的经验,把这个值设置为 8~16 之间最好(32 核物理机的情况),毕竟备库还有可能要提供读查询,不能把 CPU 都吃光了。
接下来,你需要先思考一个问题:事务能不能按照轮询的方式分发给各个 worker,也就是第一个事务分给 worker_1,第二个事务发给 worker_2 呢?
其实是不行的。因为,事务被分发给 worker 以后,不同的 worker 就独立执行了。但是,由于 CPU 的调度策略,很可能第二个事务最终比第一个事务先执行。而如果这时候刚好这两个事务更新的是同一行,也就意味着,同一行上的两个事务,在主库和备库上的执行顺序相反,会导致主备不一致的问题。
接下来,请你再设想一下另外一个问题:同一个事务的多个更新语句,能不能分给不同的worker 来执行呢?
答案是,也不行。举个例子,一个事务更新了表 t1 和表 t2 中的各一行,如果这两条更新语句被分到不同 worker 的话,虽然最终的结果是主备一致的,但如果表 t1 执行完成的瞬间,备库上有一个查询,就会看到这个事务“更新了一半的结果”,破坏了事务逻辑的隔离性。
所以,coordinator 在分发的时候,需要满足以下这两个基本要求:
1. 不能造成更新覆盖。这就要求更新同一行的两个事务,必须被分发到同一个 worker中。
2. 同一个事务不能被拆开,必须放到同一个 worker 中。
各个版本的多线程复制,都遵循了这两条基本原则。接下来,我们就看看各个版本的并行复制策略。

MySQL 5.5 版本的并行复制策略

官方 MySQL 5.5 版本是不支持并行复制的。但是,在 2012 年的时候,我自己服务的业务出现了严重的主备延迟,原因就是备库只有单线程复制。然后,我就先后写了两个版本的并行策略。
这里,介绍一下这两个版本的并行策略,即按表分发策略和按行分发策略,以帮助你理解 MySQL 官方版本并行复制策略的迭代。

按表分发策略

按表分发事务的基本思路是,如果两个事务更新不同的表,它们就可以并行。因为数据是存储在表里的,所以按表分发,可以保证两个 worker 不会更新同一行。
当然,如果有跨表的事务,还是要把两张表放在一起考虑的。如图 3 所示,就是按表分发的规则。 

可以看到,每个 worker 线程对应一个 hash 表,用于保存当前正在这个 worker 的“执行队列”里的事务所涉及的表。hash 表的 key 是“库名. 表名”,value 是一个数字,表示队列中有多少个事务修改这个表。
在有事务分配给 worker 时,事务里面涉及的表会被加到对应的 hash 表中。worker 执行完成后,这个表会被从 hash 表中去掉。
图 3 中,hash_table_1 表示,现在 worker_1 的“待执行事务队列”里,有 4 个事务涉及到 db1.t1 表,有 1 个事务涉及到 db2.t2 表;hash_table_2 表示,现在 worker_2 中有一个事务会更新到表 t3 的数据。
假设在图中的情况下,coordinator 从中转日志中读入一个新事务 T,这个事务修改的行涉及到表 t1 和 t3。
现在我们用事务 T 的分配流程,来看一下分配规则。
1. 由于事务 T 中涉及修改表 t1,而 worker_1 队列中有事务在修改表 t1,事务 T 和队列中的某个事务要修改同一个表的数据,这种情况我们说事务 T 和 worker_1 是冲突的。
2. 按照这个逻辑,顺序判断事务 T 和每个 worker 队列的冲突关系,会发现事务 T 跟worker_2 也冲突。
3. 事务 T 跟多于一个 worker 冲突,coordinator 线程就进入等待。
4. 每个 worker 继续执行,同时修改 hash_table。假设 hash_table_2 里面涉及到修改表t3 的事务先执行完成,就会从 hash_table_2 中把 db1.t3 这一项去掉。
5. 这样 coordinator 会发现跟事务 T 冲突的 worker 只有 worker_1 了,因此就把它分配给 worker_1。
6. coordinator 继续读下一个中转日志,继续分配事务。
也就是说,每个事务在分发的时候,跟所有 worker 的冲突关系包括以下三种情况:
1. 如果跟所有 worker 都不冲突,coordinator 线程就会把这个事务分配给最空闲的woker;
2. 如果跟多于一个 worker 冲突,coordinator 线程就进入等待状态,直到和这个事务存在冲突关系的 worker 只剩下 1 个;
3. 如果只跟一个 worker 冲突,coordinator 线程就会把这个事务分配给这个存在冲突关系的 worker。
这个按表分发的方案,在多个表负载均匀的场景里应用效果很好。但是,如果碰到热点表,比如所有的更新事务都会涉及到某一个表的时候,所有事务都会被分配到同一个worker 中,就变成单线程复制了。

按行分发策略

要解决热点表的并行复制问题,就需要一个按行并行复制的方案。按行复制的核心思路是:如果两个事务没有更新相同的行,它们在备库上可以并行执行。显然,这个模式要求binlog 格式必须是 row。
这时候,我们判断一个事务 T 和 worker 是否冲突,用的就规则就不是“修改同一个表”,而是“修改同一行”。
按行复制和按表复制的数据结构差不多,也是为每个 worker,分配一个 hash 表。只是要实现按行分发,这时候的 key,就必须是“库名 + 表名 + 唯一键的值”。
但是,这个“唯一键”只有主键 id 还是不够的,我们还需要考虑下面这种场景,表 t1 中除了主键,还有唯一索引 a: 

CREATE TABLE `t1` (
`id` int(11) NOT NULL,
`a` int(11) DEFAULT NULL,
`b` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `a` (`a`)
) ENGINE=InnoDB;

insert into t1 values(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5);

假设,接下来我们要在主库执行这两个事务:

 可以看到,这两个事务要更新的行的主键值不同,但是如果它们被分到不同的 worker,就有可能 session B 的语句先执行。这时候 id=1 的行的 a 的值还是 1,就会报唯一键冲突。
因此,基于行的策略,事务 hash 表中还需要考虑唯一键,即 key 应该是“库名 + 表名 + 索引 a 的名字 +a 的值”。
比如,在上面这个例子中,我要在表 t1 上执行 update t1 set a=1 where id=2 语句,在binlog 里面记录了整行的数据修改前各个字段的值,和修改后各个字段的值。
因此,coordinator 在解析这个语句的 binlog 的时候,这个事务的 hash 表就有三个项:
1. key=hash_func(db1+t1+“PRIMARY”+2), value=2; 这里 value=2 是因为修改前后的行 id 值不变,出现了两次。
2. key=hash_func(db1+t1+“a”+2), value=1,表示会影响到这个表 a=2 的行。
3. key=hash_func(db1+t1+“a”+1), value=1,表示会影响到这个表 a=1 的行。
可见,相比于按表并行分发策略,按行并行策略在决定线程分发的时候,需要消耗更多的计算资源。你可能也发现了,这两个方案其实都有一些约束条件:
1. 要能够从 binlog 里面解析出表名、主键值和唯一索引的值。也就是说,主库的 binlog格式必须是 row;
2. 表必须有主键;
3. 不能有外键。表上如果有外键,级联更新的行不会记录在 binlog 中,这样冲突检测就不准确。
但,好在这三条约束规则,本来就是 DBA 之前要求业务开发人员必须遵守的线上使用规范,所以这两个并行复制策略在应用上也没有碰到什么麻烦。
对比按表分发和按行分发这两个方案的话,按行分发策略的并行度更高。不过,如果是要操作很多行的大事务的话,按行分发的策略有两个问题:
1. 耗费内存。比如一个语句要删除 100 万行数据,这时候 hash 表就要记录 100 万个项。
2. 耗费 CPU。解析 binlog,然后计算 hash 值,对于大事务,这个成本还是很高的。
所以,我在实现这个策略的时候会设置一个阈值,单个事务如果超过设置的行数阈值(比如,如果单个事务更新的行数超过 10 万行),就暂时退化为单线程模式,退化过程的逻辑大概是这样的:
1. coordinator 暂时先 hold 住这个事务;
2. 等待所有 worker 都执行完成,变成空队列;
3. coordinator 直接执行这个事务;
4. 恢复并行模式。
读到这里,你可能会感到奇怪,这两个策略又没有被合到官方,我为什么要介绍这么详细呢?其实,介绍这两个策略的目的是抛砖引玉,方便你理解后面要介绍的社区版本策略。

MySQL 5.6 版本的并行复制策略

官方 MySQL5.6 版本,支持了并行复制,只是支持的粒度是按库并行。理解了上面介绍的按表分发策略和按行分发策略,你就理解了,用于决定分发策略的 hash 表里,key 就是数据库名。
这个策略的并行效果,取决于压力模型。如果在主库上有多个 DB,并且各个 DB 的压力均衡,使用这个策略的效果会很好。
相比于按表和按行分发,这个策略有两个优势:
1. 构造 hash 值的时候很快,只需要库名;而且一个实例上 DB 数也不会很多,不会出现需要构造 100 万个项这种情况。
2. 不要求 binlog 的格式。因为 statement 格式的 binlog 也可以很容易拿到库名。
但是,如果你的主库上的表都放在同一个 DB 里面,这个策略就没有效果了;或者如果不同 DB 的热点不同,比如一个是业务逻辑库,一个是系统配置库,那也起不到并行的效果。
理论上你可以创建不同的 DB,把相同热度的表均匀分到这些不同的 DB 中,强行使用这个策略。不过据我所知,由于需要特地移动数据,这个策略用得并不多。

MariaDB 的并行复制策略

在第 23 篇文章中,我给你介绍了 redo log 组提交 (group commit) 优化, 而 MariaDB的并行复制策略利用的就是这个特性:
1. 能够在同一组里提交的事务,一定不会修改同一行;
2. 主库上可以并行执行的事务,备库上也一定是可以并行执行的。
在实现上,MariaDB 是这么做的:
1. 在一组里面一起提交的事务,有一个相同的 commit_id,下一组就是 commit_id+1;
2. commit_id 直接写到 binlog 里面;
3. 传到备库应用的时候,相同 commit_id 的事务分发到多个 worker 执行;
4. 这一组全部执行完成后,coordinator 再去取下一批。
当时,这个策略出来的时候是相当惊艳的。因为,之前业界的思路都是在“分析 binlog,并拆分到 worker”上。而 MariaDB 的这个策略,目标是“模拟主库的并行模式”。
但是,这个策略有一个问题,它并没有实现“真正的模拟主库并发度”这个目标。在主库上,一组事务在 commit 的时候,下一组事务是同时处于“执行中”状态的。
如图 5 所示,假设了三组事务在主库的执行情况,你可以看到在 trx1、trx2 和 trx3 提交的时候,trx4、trx5 和 trx6 是在执行的。这样,在第一组事务提交完成的时候,下一组事务很快就会进入 commit 状态。

而按照 MariaDB 的并行复制策略,备库上的执行效果如图 6 所示。

 可以看到,在备库上执行的时候,要等第一组事务完全执行完成后,第二组事务才能开始执行,这样系统的吞吐量就不够。
另外,这个方案很容易被大事务拖后腿。假设 trx2 是一个超大事务,那么在备库应用的时候,trx1 和 trx3 执行完成后,就只能等 trx2 完全执行完成,下一组才能开始执行。这段时间,只有一个 worker 线程在工作,是对资源的浪费。
不过即使如此,这个策略仍然是一个很漂亮的创新。因为,它对原系统的改造非常少,实现也很优雅。

MySQL 5.7 的并行复制策略

在 MariaDB 并行复制实现之后,官方的 MySQL5.7 版本也提供了类似的功能,由参数slave-parallel-type 来控制并行复制策略:
1. 配置为 DATABASE,表示使用 MySQL 5.6 版本的按库并行策略;
2. 配置为 LOGICAL_CLOCK,表示的就是类似 MariaDB 的策略。不过,MySQL 5.7 这个策略,针对并行度做了优化。这个优化的思路也很有趣儿。
你可以先考虑这样一个问题:同时处于“执行状态”的所有事务,是不是可以并行?
答案是,不能。
因为,这里面可能有由于锁冲突而处于锁等待状态的事务。如果这些事务在备库上被分配到不同的 worker,就会出现备库跟主库不一致的情况。
而上面提到的 MariaDB 这个策略的核心,是“所有处于 commit”状态的事务可以并行。事务处于 commit 状态,表示已经通过了锁冲突的检验了。
这时候,你可以再回顾一下两阶段提交,我把前面第 23 篇文章中介绍过的两阶段提交过程图贴过来。

其实,不用等到 commit 阶段,只要能够到达 redo log prepare 阶段,就表示事务已经通过锁冲突的检验了。
因此,MySQL 5.7 并行复制策略的思想是:
1. 同时处于 prepare 状态的事务,在备库执行时是可以并行的;
2. 处于 prepare 状态的事务,与处于 commit 状态的事务之间,在备库执行时也是可以并行的。
我在第 23 篇文章,讲 binlog 的组提交的时候,介绍过两个参数:
1. binlog_group_commit_sync_delay 参数,表示延迟多少微秒后才调用 fsync;
2. binlog_group_commit_sync_no_delay_count 参数,表示累积多少次以后才调用fsync。
这两个参数是用于故意拉长 binlog 从 write 到 fsync 的时间,以此减少 binlog 的写盘次数。在 MySQL 5.7 的并行复制策略里,它们可以用来制造更多的“同时处于 prepare 阶段的事务”。这样就增加了备库复制的并行度。
也就是说,这两个参数,既可以“故意”让主库提交得慢些,又可以让备库执行得快些。
在 MySQL 5.7 处理备库延迟的时候,可以考虑调整这两个参数值,来达到提升备库复制并发度的目的。

MySQL 5.7.22 的并行复制策略

在 2018 年 4 月份发布的 MySQL 5.7.22 版本里,MySQL 增加了一个新的并行复制策略,基于 WRITESET 的并行复制。
相应地,新增了一个参数 binlog-transaction-dependency-tracking,用来控制是否启用这个新策略。这个参数的可选值有以下三种。
1. COMMIT_ORDER,表示的就是前面介绍的,根据同时进入 prepare 和 commit 来判断是否可以并行的策略。
2. WRITESET,表示的是对于事务涉及更新的每一行,计算出这一行的 hash 值,组成集合 writeset。如果两个事务没有操作相同的行,也就是说它们的 writeset 没有交集,就可以并行。
3. WRITESET_SESSION,是在 WRITESET 的基础上多了一个约束,即在主库上同一个线程先后执行的两个事务,在备库执行的时候,要保证相同的先后顺序。
当然为了唯一标识,这个 hash 值是通过“库名 + 表名 + 索引名 + 值”计算出来的。如果一个表上除了有主键索引外,还有其他唯一索引,那么对于每个唯一索引,insert 语句对应的 writeset 就要多增加一个 hash 值。
你可能看出来了,这跟我们前面介绍的基于 MySQL 5.5 版本的按行分发的策略是差不多的。不过,MySQL 官方的这个实现还是有很大的优势:
1. writeset 是在主库生成后直接写入到 binlog 里面的,这样在备库执行的时候,不需要解析 binlog 内容(event 里的行数据),节省了很多计算量;
2. 不需要把整个事务的 binlog 都扫一遍才能决定分发到哪个 worker,更省内存;
3. 由于备库的分发策略不依赖于 binlog 内容,所以 binlog 是 statement 格式也是可以的。
因此,MySQL 5.7.22 的并行复制策略在通用性上还是有保证的。
当然,对于“表上没主键”和“外键约束”的场景,WRITESET 策略也是没法并行的,也会暂时退化为单线程模型。

小结

在今天这篇文章中,介绍了 MySQL 的各种多线程复制策略。
为什么要有多线程复制呢?这是因为单线程复制的能力全面低于多线程复制,对于更新压力较大的主库,备库是可能一直追不上主库的。从现象上看就是,备库上seconds_behind_master 的值越来越大。
在介绍完每个并行复制策略后,分享了不同策略的优缺点:
如果你是 DBA,就需要根据不同的业务场景,选择不同的策略;
如果是你业务开发人员,也希望你能从中获取灵感用到平时的开发工作中。
从这些分析中,你也会发现大事务不仅会影响到主库,也是造成备库复制延迟的主要原因之一。因此,在平时的开发工作中,我建议你尽量减少大事务操作,把大事务拆成小事务。
官方 MySQL5.7 版本新增的备库并行策略,修改了 binlog 的内容,也就是说 binlog 协议并不是向上兼容的,在主备切换、版本升级的时候需要把这个因素也考虑进去。 

补充:

什么情况下,备库的主备延迟会表现为一个 45 度的线段?

重点:备库的同步在这段时间完全被堵住了。
产生这种现象典型的场景主要包括两种:
一种是大事务(包括大表 DDL、一个事务操作很多行);
还有一种情况比较隐蔽,就是备库起了一个长事务,比如

begin; 
select * from t limit 1;

然后就不动了。
这时候主库对表 t 做了一个加字段操作,即使这个表很小,这个 DDL 在备库应用的时候也会被堵住,也不能看到这个现象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/739071.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nvm的安装与使用5分钟极速上手

nvm的安装与使用5分钟极速上手 下载 nvm 并安装 nvm官网下载地址推荐下载 nvm-setup.zip 这一个,nvm-noinstall.zip下载之后不用安装,但是得自己配置setting.txt文件,以及环境变量,过于麻烦。nvm-setup.zip 会直接帮我们把环境变…

开篇(变量、运算符、进制)

一、Java简介 JDK(JRE(JVM & API)、Java language(tools & APIs));java源文件 → javac的编译 → class类(会生成一个或多个class文件); * 使用 jav…

什么是Qt Widgets?一组创建经典桌面应用UI的界面组件!

Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今,Qt已被运用于超过70个行业、数千家企业,支持数百万设备及应用。 Qt Widgets模块提供…

QGIS 根据点位批量出图

背景 在工作中,当有大量项目点位需要结合地图介绍时,则需要批量截图。于是有了今天的教程。 一 工具及材料准备 QGIS 插件 QuickMapServices 点位集合 CSV文件 其他图层文件 二 导入图层 这里根据实际需要导入自己对应格式的就好。 图层-添加…

计算机网络地址

1、ipv4地址 2、网络地址转换 3、子网划分和主机号

Spring MVC 注解实现

注解描述 注解描述Controller用于标记在一个类上,使用它标记的类就是一个SpringMVC Controller 对象,分发处理器将会扫描使用了该注解的类的方法,并检测该方法是否使用了RequestMapping 注解。Controller 只是定义了一个控制器类&#xff0c…

第七章 环境软件的安装

1、nodeJS安装 node -v node版本 安装多个node版本 pnpm i nvm -g nvm -v nvm ls 查看当前安装的版本 nvm install 18.7.0 安装指定的版本 nvm use 18.6.0 切换到别的版本 安装pnpm npm i pnpm -g pnpm -v 安装VSCode 官网直接下载 安装好后 需要配置 按住 CMD +…

基于单片机的老人防摔倒的设计与实现

功能介绍 以51单片机作为主控系统;通过LCD1602液晶显示屏显示当前的经纬度及时间的信息;温度传感器采集当前体温;通过GPS接收模块获得当前位置的位置的经度、纬度、时间和高度等信息;通过ADXL345检测老人摔倒的一瞬间重力加速度通…

[解决Github 克隆错误] unable to access ‘xxx‘: Recv failure: Connect

1.错误描述: 从GitHub上克隆仓库到本地,出现错误: unable to access https://github.com/xxxx: Recv failure: Connection was reset。 克隆失败。 2.第一次解决此问题:从终端输入: git config --global http.sslVer…

Liunx下的消费者与生产者模型与简单线程池的实现

文章目录 前言1.消费者与生产者模型2.信号量1.信号量的接口2.使用环形队列模拟生产者消费者模型 3.简单实现线程池4.补充说明 前言 本文主要会结束消费者生产者模型,以及简单线程池的实现。 1.消费者与生产者模型 之前我们学了条件变量和互斥等概念。条件变量本质…

vETSTStudio - CAPL - CAN报文未使用位

目录 ChkStart_PayloadGapsObservation 代码示例 ChkStart_PayloadGapsObservationTx 代码示例 ChkStart_PayloadGapsObservationRx 代码示例 我们在做CAN&CANFD通信或者CAN&CANFD网络管理的时候,就会测试到DBC中报文各种信号和位的使用状态&#xff…

从数据采集到智能控制,探寻锂电卷绕机的自动化之路

在锂电池制造过程中,卷绕机被视为关键设备之一。它负责将正负极材料和隔膜按照设计要求卷绕成电芯,是确保锂电池性能和质量的重要环节。为了提高生产效率、确保产品质量,锂电池行业越来越注重引入智能化技术和设备。 图.锂电池生产&#xff0…

spring boot+MySQL福聚苑社区团商品购系统

开发语言:Java 框架:springboot JDK版本:JDK1.8 服务器:tomcat7 数据库:mysql 5.7 数据库工具:Navicat11 开发软件:eclipse/myeclipse/idea Maven包:Maven3.3.9

尚硅谷Linux学习笔记

文章目录 1. Linux概述2. Linux目录结构3. Linux操作命令3.1 vim编辑命令3.1.1 一般模式3.1.2 编辑模式3.1.3 指令模式 3.2 网络相关命令3.3 系统管理3.4 帮助命令3.4.1 man 获得帮助信息3.4.2 help 获得 shell 内置命令的帮助信息3.4.3 常用快捷键 3.5 文件目录类3.5.1 pwd、e…

ROS:rosbag的使用

目录 一、背景二、概念及作用三、rosbag命令行四、rosbag程序实现4.1C实现4.2Python实现 一、背景 机器人传感器获取到的信息,有时我们可能需要时时处理,有时可能只是采集数据,事后分析,比如: 机器人导航实现中,可能…

基于 BPF 的 Linux 系统自动调优工具:Oracle 开发了 “bpftune”

导读Oracle 开源了一个基于 BPF 的 Linux 参数自动调优工具 “bpftune”,这是一个自动配置器,可以监控 Linux 系统的工作负载并自动设置正确的内核参数值。 Oracle 开源了一个基于 BPF 的 Linux 参数自动调优工具 “bpftune”,这是一个自动配…

U盘写流程USB协议抓包分析

U盘写流程USB协议抓包分析 因好奇于操作系统在对U盘这个块设备是如何进行读写传递数据包,笔者通过抓包测试,做了一个简单分析。安装了wireshark的usbPcap即能抓取主机USB接口上的usb包。 A、基本包信息分析 让我们先从读流程开始分析一下USB包的包结构…

音视频技术开发周刊 | 301

每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 微软、谷歌、亚马逊,打响大模型时代的云战争 过去数月,云巨头们砸下真金白银,研发大模型、战略投资、自研 AI 芯片……大模型的时代方兴…

ArcGIS Pro中的模型构建器演示

前言 ArcGIS Pro的模型构建器在功能上相较于大致没有什么改动,主要是界面上变得相对漂亮,流程中使用了一些半透明的效果,相较于arcmap中的模型构建器,可以说是颜值进化很大了。 实战 首先我们来看一下演示效果,怎么样,是不是很方便 先建立一个模型 对于模型构建器我一直…

java main 方法的理解

文章目录 理解命令行参数用法举例IDEA工具配置参数(了解) 理解 由于JVM需要调用类的main()方法,所以该方法的访问权限必须是public,又因为JVM在执行main()方法时不必创建对象,所以该方法必须是static的,该…