Nerf-Wild代码学习笔记Neural Radiance Fields for Unconstrained Photo Collections

news2024/10/6 2:20:18

前言:

本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号: AI知识物语 B站讲解:出门吃三碗饭

本篇文章主要针对其代码来学习其内容,关于代码的理解可能会有出入,欢迎批评指正!!!

1:Paper with code 获取代码

(论文是论文:https://arxiv.org/abs/2003.08934)
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

代码地址,自取
在这里插入图片描述
Nerf 与unity结合
在这里插入图片描述
项目目录如下,这是nerf-wild的代码,不要clone错了
在这里插入图片描述

2:nerf.py

位置编码函数
有点类似这个函数(代码和下图公告不完全一致!)
注释里有解释其具体函数
(代码) x to (x, sin(2^k x), cos(2^k x), …)
(参考函数)在这里插入图片描述

class PosEmbedding(nn.Module):
    def __init__(self, max_logscale, N_freqs, logscale=True):
        """
        Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...)
        """
        super().__init__()
        self.funcs = [torch.sin, torch.cos]

        if logscale:
            self.freqs = 2**torch.linspace(0, max_logscale, N_freqs)
        else:
            self.freqs = torch.linspace(1, 2**max_logscale, N_freqs)

    def forward(self, x):
        """
        Inputs:
            x: (B, 3)

        Outputs:
            out: (B, 6*N_freqs+3)
        """
        out = [x]
        for freq in self.freqs:
            for func in self.funcs:
                out += [func(freq*x)]

        return torch.cat(out, -1)

Nerf网络结构 (重点)

class NeRF(nn.Module):
    def __init__(self, typ,
                 D=8, W=256, skips=[4],
                 in_channels_xyz=63, in_channels_dir=27,
                 encode_appearance=False, in_channels_a=48,
                 encode_transient=False, in_channels_t=16,
                 beta_min=0.03):
        """
        ---Parameters for the original NeRF---
        D: number of layers for density (sigma) encoder
        W: number of hidden units in each layer
        skips: add skip connection in the Dth layer
        in_channels_xyz: number of input channels for xyz (3+3*10*2=63 by default)
        in_channels_dir: number of input channels for direction (3+3*4*2=27 by default)
        in_channels_t: number of input channels for t

        ---Parameters for NeRF-W (used in fine model only as per section 4.3)---
        ---cf. Figure 3 of the paper---
        encode_appearance: whether to add appearance encoding as input (NeRF-A)
        in_channels_a: appearance embedding dimension. n^(a) in the paper
        encode_transient: whether to add transient encoding as input (NeRF-U)
        in_channels_t: transient embedding dimension. n^(tau) in the paper
        beta_min: minimum pixel color variance
        """
        super().__init__()
        self.typ = typ
        self.D = D
        self.W = W
        self.skips = skips
        self.in_channels_xyz = in_channels_xyz
        self.in_channels_dir = in_channels_dir

        self.encode_appearance = False if typ=='coarse' else encode_appearance
        self.in_channels_a = in_channels_a if encode_appearance else 0
        self.encode_transient = False if typ=='coarse' else encode_transient
        self.in_channels_t = in_channels_t
        self.beta_min = beta_min

        # xyz encoding layers
        for i in range(D):
            if i == 0:
                layer = nn.Linear(in_channels_xyz, W)
            elif i in skips:
                layer = nn.Linear(W+in_channels_xyz, W)
            else:
                layer = nn.Linear(W, W)
            layer = nn.Sequential(layer, nn.ReLU(True))
            setattr(self, f"xyz_encoding_{i+1}", layer)
        self.xyz_encoding_final = nn.Linear(W, W)

        # direction encoding layers
        self.dir_encoding = nn.Sequential(
                        nn.Linear(W+in_channels_dir+self.in_channels_a, W//2), nn.ReLU(True))

        # static output layers
        self.static_sigma = nn.Sequential(nn.Linear(W, 1), nn.Softplus())
        self.static_rgb = nn.Sequential(nn.Linear(W//2, 3), nn.Sigmoid())

        if self.encode_transient:
            # transient encoding layers
            self.transient_encoding = nn.Sequential(
                                        nn.Linear(W+in_channels_t, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True))
            # transient output layers
            self.transient_sigma = nn.Sequential(nn.Linear(W//2, 1), nn.Softplus())
            self.transient_rgb = nn.Sequential(nn.Linear(W//2, 3), nn.Sigmoid())
            self.transient_beta = nn.Sequential(nn.Linear(W//2, 1), nn.Softplus())

    def forward(self, x, sigma_only=False, output_transient=True):
        """
        Encodes input (xyz+dir) to rgb+sigma (not ready to render yet).
        For rendering this ray, please see rendering.py

        Inputs:
            x: the embedded vector of position (+ direction + appearance + transient)
            sigma_only: whether to infer sigma only.
            has_transient: whether to infer the transient component.

        Outputs (concatenated):
            if sigma_ony:
                static_sigma
            elif output_transient:
                static_rgb, static_sigma, transient_rgb, transient_sigma, transient_beta
            else:
                static_rgb, static_sigma
        """
        if sigma_only:
            input_xyz = x
        elif output_transient:
            input_xyz, input_dir_a, input_t = \
                torch.split(x, [self.in_channels_xyz,
                                self.in_channels_dir+self.in_channels_a,
                                self.in_channels_t], dim=-1)
        else:
            input_xyz, input_dir_a = \
                torch.split(x, [self.in_channels_xyz,
                                self.in_channels_dir+self.in_channels_a], dim=-1)
            

        xyz_ = input_xyz
        for i in range(self.D):
            if i in self.skips:
                xyz_ = torch.cat([input_xyz, xyz_], 1)
            xyz_ = getattr(self, f"xyz_encoding_{i+1}")(xyz_)

        static_sigma = self.static_sigma(xyz_) # (B, 1)
        if sigma_only:
            return static_sigma

        xyz_encoding_final = self.xyz_encoding_final(xyz_)
        dir_encoding_input = torch.cat([xyz_encoding_final, input_dir_a], 1)
        dir_encoding = self.dir_encoding(dir_encoding_input)
        static_rgb = self.static_rgb(dir_encoding) # (B, 3)
        static = torch.cat([static_rgb, static_sigma], 1) # (B, 4)

        if not output_transient:
            return static

        transient_encoding_input = torch.cat([xyz_encoding_final, input_t], 1)
        transient_encoding = self.transient_encoding(transient_encoding_input)
        transient_sigma = self.transient_sigma(transient_encoding) # (B, 1)
        transient_rgb = self.transient_rgb(transient_encoding) # (B, 3)
        transient_beta = self.transient_beta(transient_encoding) # (B, 1)

        transient = torch.cat([transient_rgb, transient_sigma,
                               transient_beta], 1) # (B, 5)

        return torch.cat([static, transient], 1) # (B, 9)

这段代码定义了一个名为NeRF的模块类,用于将输入x编码为RGB颜色和密度(sigma)的输出。具体的功能如下:

初始化函数__init__接受以下参数:

typ:模型类型,可以是coarse或fine
D:密度(sigma)编码器的层数 (默认8层)
W:每层中的隐藏单元数 (默认256个单元)
skips:在第D层中添加跳跃连接的层数列表 (默认第4层跳转)
in_channels_xyz:坐标(xyz)的输入通道数,默认为63(63为经过PosEmbedding后的一个通道数)
in_channels_dir:方向的输入通道数,默认为27 (同理)
encode_appearance:是否添加外观编码作为输入,默认为False
in_channels_a:外观嵌入的维度,默认为48 ( appearance embedding)
encode_transient:是否添加瞬变编码作为输入,默认为False
in_channels_t:瞬变嵌入的维度,默认为16 ( transient embedding)
beta_min:像素颜色方差的最小值,默认为0.03
在初始化函数中,根据模型类型typ和是否编码外观encode_appearance、是否编码瞬变encode_transient进行设置。

初始化xyz编码器层。使用nn.Linear和nn.ReLU构建了多层全连接网络,并使用setattr动态地给模块设置属性,属性名为xyz_encoding_{i+1},其中i为层的索引。

        for i in range(D):
            if i == 0:
                layer = nn.Linear(in_channels_xyz, W)
            elif i in skips:
                layer = nn.Linear(W+in_channels_xyz, W)
            else:
                layer = nn.Linear(W, W)
            layer = nn.Sequential(layer, nn.ReLU(True))
            setattr(self, f"xyz_encoding_{i+1}", layer)
        self.xyz_encoding_final = nn.Linear(W, W)

初始化方向编码器层。使用nn.Linear和nn.ReLU构建了一个全连接网络。

        self.dir_encoding = nn.Sequential(
                        nn.Linear(W+in_channels_dir+self.in_channels_a, W//2), nn.ReLU(True))

初始化静态输出层。使用nn.Linear和nn.Softplus构建了两个全连接网络,分别用于预测密度(sigma)和RGB颜色。

self.static_sigma = nn.Sequential(nn.Linear(W, 1), nn.Softplus())
        self.static_rgb = nn.Sequential(nn.Linear(W//2, 3), nn.Sigmoid())

如果模型需要编码瞬变,则初始化瞬变编码器层和瞬变输出层。使用nn.Linear和nn.ReLU构建了多层全连接网络,并使用nn.Softplus和nn.Sigmoid构建了多个全连接网络,分别用于预测瞬变的密度(sigma)、RGB颜色和像素颜色方差。

        if self.encode_transient:
            # transient encoding layers
            self.transient_encoding = nn.Sequential(
                                        nn.Linear(W+in_channels_t, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True),
                                        nn.Linear(W//2, W//2), nn.ReLU(True))
            # transient output layers
            self.transient_sigma = nn.Sequential(nn.Linear(W//2, 1), nn.Softplus())
            self.transient_rgb = nn.Sequential(nn.Linear(W//2, 3), nn.Sigmoid())
            self.transient_beta = nn.Sequential(nn.Linear(W//2, 1), nn.Softplus())

前向传播函数forward接受输入x,以及是否只输出密度(sigma)、是否输出瞬变组件的标志。

如果只输出密度(sigma),则将输入x作为xyz的编码输入,并通过静态密度(sigma)网络得到输出。

如果需要输出瞬变组件,则将输入x分割为xyz的编码输入、方向和外观的输入以及瞬变的输入,并分别经过对应的编码器层得到输出

将xyz的编码输出和方向/外观的编码输入连接起来,并通过方向编码器层得到输出。然后,通过静态RGB网络得到静态RGB颜色输出。

如果不需要输出瞬变组件,则将静态RGB颜色和静态密度(sigma)连接起来作为输出。

如果需要输出瞬变组件,则将xyz的编码输出和瞬变的输入连接起来,并通过瞬变编码器层得到输出。然后,通过瞬变的RGB、密度(sigma)和像素颜色方差网络得到瞬变组件的输出。

最终,将静态组件和瞬变组件连接起来作为输出。输出形状为(B, 9),其中B为批量大小。

简略网络图参考
在这里插入图片描述

下面是我简单测试后输出的网络层

NeRF(
  (xyz_encoding_1): Sequential(
    (0): Linear(in_features=63, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_2): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_3): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_4): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_5): Sequential(
    (0): Linear(in_features=319, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_6): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_7): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_8): Sequential(
    (0): Linear(in_features=256, out_features=256, bias=True)
    (1): ReLU(inplace=True)
  )
  (xyz_encoding_final): Linear(in_features=256, out_features=256, bias=True)
  (dir_encoding): Sequential(
    (0): Linear(in_features=283, out_features=128, bias=True)
    (1): ReLU(inplace=True)
  )
  (static_sigma): Sequential(
    (0): Linear(in_features=256, out_features=1, bias=True)
    (1): Softplus(beta=1, threshold=20)
  )
  (static_rgb): Sequential(
    (0): Linear(in_features=128, out_features=3, bias=True)
    (1): Sigmoid()
  )
)


下面这个图是论文NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 的网络图,其前半部分大致是相同的,全连接层以及对应的relu, skip操作等等
在这里插入图片描述

3:损失函数

在这里插入图片描述
这段代码定义了两个损失函数类:

3.1ColorLoss

ColorLoss类用于计算颜色损失,初始化函数__init__接受一个参数coef,用于调节损失的权重。在初始化函数中,定义了一个均方误差损失函数nn.MSELoss,并将其赋值给属性self.loss。

在前向传播中,计算了粗采样的颜色coarse-color输出与目标值之间的均方误差损失c_l。如果inputs中还包含了细采样fine-color颜色输出rgb_fine,则计算细化颜色输出与目标值之间的均方误差损失f_l。最后,将粗采样颜色损失和细采样颜色损失加权求和,并乘以权重coef作为最终的损失输出。

3.2NerfWLoss

在这里插入图片描述

NerfWLoss类用于计算NeRF-W论文中的损失函数,初始化函数__init__接受两个参数coef和lambda_u(默认0.01),分别表示损失的权重和论文中的lambda_u超参数。

在前向传播中,计算了粗采样颜色输出与目标值之间的均方误差损失c_l。如果inputs中还包含了细化颜色输出rgb_fine,则根据是否包含了瞬变组件计算不同的细采样颜色损失。(同理)

如果没有瞬变组件(transient head),使用均方误差损失函数计算细化颜色输出与目标值之间的损失f_l。
如果包含了瞬变组件(transient head),使用公式13中的第一项计算细采样颜色损失f_l,其中分子部分为细采样颜色输出与目标值之间的平方差,分母部分为输入inputs中的beta值的平方乘以2,再取均值。

同时,计算了输入inputs中的beta值的对数的平均值,并加上3以保证其为正数,作为公式13中的第二项beta损失b_l。

ret['b_l'] = 3 + torch.log(inputs['beta']).mean() # +3 to make it positive

最后,计算了输入inputs中的瞬变组件(transient head)密度(sigma)的平均值乘以lambda_u超参数,作为公式13中的第三项sigma损失s_l。

补充:这里我看其他大佬有写解释的一种说法是,为了避免beta值过大,导致第1项为0,设了第2项,可以让其稍微偏离0)

最后,将粗糙颜色损失、细化颜色损失、beta损失和sigma损失分别乘以权重coef作为最终的损失输出。

其他内容具体可以参考代码

class ColorLoss(nn.Module):
    def __init__(self, coef=1):
        super().__init__()
        self.coef = coef
        self.loss = nn.MSELoss(reduction='mean')

    def forward(self, inputs, targets):
        loss = self.loss(inputs['rgb_coarse'], targets)
        if 'rgb_fine' in inputs:
            loss += self.loss(inputs['rgb_fine'], targets)

        return self.coef * loss


class NerfWLoss(nn.Module):
    """
    Equation 13 in the NeRF-W paper.
    Name abbreviations:
        c_l: coarse color loss
        f_l: fine color loss (1st term in equation 13)
        b_l: beta loss (2nd term in equation 13)
        s_l: sigma loss (3rd term in equation 13)
    """
    def __init__(self, coef=1, lambda_u=0.01):
        """
        lambda_u: in equation 13
        """
        super().__init__()
        self.coef = coef
        self.lambda_u = lambda_u

    def forward(self, inputs, targets):
        ret = {}
        ret['c_l'] = 0.5 * ((inputs['rgb_coarse']-targets)**2).mean()
        if 'rgb_fine' in inputs:
            if 'beta' not in inputs: # no transient head, normal MSE loss
                ret['f_l'] = 0.5 * ((inputs['rgb_fine']-targets)**2).mean()
            else:
                ret['f_l'] = \
                    ((inputs['rgb_fine']-targets)**2/(2*inputs['beta'].unsqueeze(1)**2)).mean()
                ret['b_l'] = 3 + torch.log(inputs['beta']).mean() # +3 to make it positive
                ret['s_l'] = self.lambda_u * inputs['transient_sigmas'].mean()

        for k, v in ret.items():
            ret[k] = self.coef * v

        return ret

loss_dict = {'color': ColorLoss,
             'nerfw': NerfWLoss}

train.py

这部分比较简单,主要是对上述工作的一些调用
定义了一个名为NeRFSystem的类,它是一个继承自LightningModule的模型。NeRFSystem用于实现基于NeRF(Neural Radiance Fields)的渲染系统。

在__init__方法中,模型初始化了一些参数和组件。创建了一些位置编码器(PosEmbedding)用于对位置信息进行嵌入。模型还定义了一个粗糙(coarse)NeRF模型(self.nerf_coarse)和一个细化(fine)NeRF模型(self.nerf_fine),并将它们存储在self.models字典中。

forward方法实现了批量推断。它根据输入的光线和时间戳,调用render_rays函数对光线进行渲染。渲染使用了定义的NeRF模型和嵌入器,以及其他一些参数,例如采样数量、是否使用视差、扰动等。最后,将渲染结果返回。

总体来说,NeRFSystem的作用是实现了一个NeRF渲染系统,可以对输入的光线进行渲染,并返回渲染结果。

class NeRFSystem(LightningModule):
    def __init__(self, hparams):
        super().__init__()
        self.hparams = hparams

        self.loss = loss_dict['nerfw'](coef=1)

        self.models_to_train = []
        self.embedding_xyz = PosEmbedding(hparams.N_emb_xyz-1, hparams.N_emb_xyz)
        self.embedding_dir = PosEmbedding(hparams.N_emb_dir-1, hparams.N_emb_dir)
        self.embeddings = {'xyz': self.embedding_xyz,
                           'dir': self.embedding_dir}

        if hparams.encode_a:
            self.embedding_a = torch.nn.Embedding(hparams.N_vocab, hparams.N_a)
            self.embeddings['a'] = self.embedding_a
            self.models_to_train += [self.embedding_a]
        if hparams.encode_t:
            self.embedding_t = torch.nn.Embedding(hparams.N_vocab, hparams.N_tau)
            self.embeddings['t'] = self.embedding_t
            self.models_to_train += [self.embedding_t]

        self.nerf_coarse = NeRF('coarse',
                                in_channels_xyz=6*hparams.N_emb_xyz+3,
                                in_channels_dir=6*hparams.N_emb_dir+3)
        self.models = {'coarse': self.nerf_coarse}
        if hparams.N_importance > 0:
            self.nerf_fine = NeRF('fine',
                                  in_channels_xyz=6*hparams.N_emb_xyz+3,
                                  in_channels_dir=6*hparams.N_emb_dir+3,
                                  encode_appearance=hparams.encode_a,
                                  in_channels_a=hparams.N_a,
                                  encode_transient=hparams.encode_t,
                                  in_channels_t=hparams.N_tau,
                                  beta_min=hparams.beta_min)
            self.models['fine'] = self.nerf_fine
        self.models_to_train += [self.models]

    def get_progress_bar_dict(self):
        items = super().get_progress_bar_dict()
        items.pop("v_num", None)
        return items

    def forward(self, rays, ts):
        """Do batched inference on rays using chunk."""
        B = rays.shape[0]
        results = defaultdict(list)
        for i in range(0, B, self.hparams.chunk):
            rendered_ray_chunks = \
                render_rays(self.models,
                            self.embeddings,
                            rays[i:i+self.hparams.chunk],
                            ts[i:i+self.hparams.chunk],
                            self.hparams.N_samples,
                            self.hparams.use_disp,
                            self.hparams.perturb,
                            self.hparams.noise_std,
                            self.hparams.N_importance,
                            self.hparams.chunk, # chunk size is effective in val mode
                            self.train_dataset.white_back)

            for k, v in rendered_ray_chunks.items():
                results[k] += [v]

        for k, v in results.items():
            results[k] = torch.cat(v, 0)
        return results

    def setup(self, stage):
        dataset = dataset_dict[self.hparams.dataset_name]
        kwargs = {'root_dir': self.hparams.root_dir}
        if self.hparams.dataset_name == 'phototourism':
            kwargs['img_downscale'] = self.hparams.img_downscale
            kwargs['val_num'] = self.hparams.num_gpus
            kwargs['use_cache'] = self.hparams.use_cache
        elif self.hparams.dataset_name == 'blender':
            kwargs['img_wh'] = tuple(self.hparams.img_wh)
            kwargs['perturbation'] = self.hparams.data_perturb
        self.train_dataset = dataset(split='train', **kwargs)
        self.val_dataset = dataset(split='val', **kwargs)

    def configure_optimizers(self):
        self.optimizer = get_optimizer(self.hparams, self.models_to_train)
        scheduler = get_scheduler(self.hparams, self.optimizer)
        return [self.optimizer], [scheduler]

    def train_dataloader(self):
        return DataLoader(self.train_dataset,
                          shuffle=True,
                          num_workers=4,
                          batch_size=self.hparams.batch_size,
                          pin_memory=True)

    def val_dataloader(self):
        return DataLoader(self.val_dataset,
                          shuffle=False,
                          num_workers=4,
                          batch_size=1, # validate one image (H*W rays) at a time
                          pin_memory=True)
    
    def training_step(self, batch, batch_nb):
        rays, rgbs, ts = batch['rays'], batch['rgbs'], batch['ts']
        results = self(rays, ts)
        loss_d = self.loss(results, rgbs)
        loss = sum(l for l in loss_d.values())

        with torch.no_grad():
            typ = 'fine' if 'rgb_fine' in results else 'coarse'
            psnr_ = psnr(results[f'rgb_{typ}'], rgbs)

        self.log('lr', get_learning_rate(self.optimizer))
        self.log('train/loss', loss)
        for k, v in loss_d.items():
            self.log(f'train/{k}', v, prog_bar=True)
        self.log('train/psnr', psnr_, prog_bar=True)

        return loss

    def validation_step(self, batch, batch_nb):
        rays, rgbs, ts = batch['rays'], batch['rgbs'], batch['ts']
        rays = rays.squeeze() # (H*W, 3)
        rgbs = rgbs.squeeze() # (H*W, 3)
        ts = ts.squeeze() # (H*W)
        results = self(rays, ts)
        loss_d = self.loss(results, rgbs)
        loss = sum(l for l in loss_d.values())
        log = {'val_loss': loss}
        typ = 'fine' if 'rgb_fine' in results else 'coarse'
    
        if batch_nb == 0:
            if self.hparams.dataset_name == 'phototourism':
                WH = batch['img_wh']
                W, H = WH[0, 0].item(), WH[0, 1].item()
            else:
                W, H = self.hparams.img_wh
            img = results[f'rgb_{typ}'].view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
            img_gt = rgbs.view(H, W, 3).permute(2, 0, 1).cpu() # (3, H, W)
            depth = visualize_depth(results[f'depth_{typ}'].view(H, W)) # (3, H, W)
            stack = torch.stack([img_gt, img, depth]) # (3, 3, H, W)
            self.logger.experiment.add_images('val/GT_pred_depth',
                                               stack, self.global_step)

        psnr_ = psnr(results[f'rgb_{typ}'], rgbs)
        log['val_psnr'] = psnr_

        return log

    def validation_epoch_end(self, outputs):
        mean_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
        mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()

        self.log('val/loss', mean_loss)
        self.log('val/psnr', mean_psnr, prog_bar=True)

__init __.py

这个文件里面主要优化optimizer方面的代码
(可以对比下2份代码的优化器,差别不大,不过多介绍就提一下)
代码中给出了四种可能的优化器选择:SGD、Adam、RAdam和Ranger。根据所选的优化器,函数使用给定的超参数(如学习率、动量、权重衰减等)来初始化优化器对象。

最后,函数返回初始化的优化器对象。

因此,这段代码的作用是根据超参数和模型选择合适的优化器,并返回初始化后的优化器对象。

Nerf----------Wild

import torch
# optimizer
from torch.optim import SGD, Adam
import torch_optimizer as optim
# scheduler
from torch.optim.lr_scheduler import CosineAnnealingLR, MultiStepLR
from .warmup_scheduler import GradualWarmupScheduler

from .visualization import *

def get_parameters(models):
    """Get all model parameters recursively."""
    parameters = []
    if isinstance(models, list):
        for model in models:
            parameters += get_parameters(model)
    elif isinstance(models, dict):
        for model in models.values():
            parameters += get_parameters(model)
    else: # models is actually a single pytorch model
        parameters += list(models.parameters())
    return parameters
# 在这里是选择优化器
def get_optimizer(hparams, models):
    eps = 1e-8
    parameters = get_parameters(models)
    if hparams.optimizer == 'sgd':
        optimizer = SGD(parameters, lr=hparams.lr, 
                        momentum=hparams.momentum, weight_decay=hparams.weight_decay)
    elif hparams.optimizer == 'adam':
        optimizer = Adam(parameters, lr=hparams.lr, eps=eps, 
                         weight_decay=hparams.weight_decay)
    elif hparams.optimizer == 'radam':
        optimizer = optim.RAdam(parameters, lr=hparams.lr, eps=eps, 
                                weight_decay=hparams.weight_decay)
    elif hparams.optimizer == 'ranger':
        optimizer = optim.Ranger(parameters, lr=hparams.lr, eps=eps, 
                                 weight_decay=hparams.weight_decay)
    else:
        raise ValueError('optimizer not recognized!')

    return optimizer

def get_scheduler(hparams, optimizer):
    eps = 1e-8
    if hparams.lr_scheduler == 'steplr':
        scheduler = MultiStepLR(optimizer, milestones=hparams.decay_step, 
                                gamma=hparams.decay_gamma)
    elif hparams.lr_scheduler == 'cosine':
        scheduler = CosineAnnealingLR(optimizer, T_max=hparams.num_epochs, eta_min=eps)
    elif hparams.lr_scheduler == 'poly':
        scheduler = LambdaLR(optimizer, 
                             lambda epoch: (1-epoch/hparams.num_epochs)**hparams.poly_exp)
    else:
        raise ValueError('scheduler not recognized!')

    if hparams.warmup_epochs > 0 and hparams.optimizer not in ['radam', 'ranger']:
        scheduler = GradualWarmupScheduler(optimizer, multiplier=hparams.warmup_multiplier, 
                                           total_epoch=hparams.warmup_epochs, after_scheduler=scheduler)

    return scheduler
# 选择超参数 学习率
def get_learning_rate(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']

def extract_model_state_dict(ckpt_path, model_name='model', prefixes_to_ignore=[]):
    checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
    checkpoint_ = {}
    if 'state_dict' in checkpoint: # if it's a pytorch-lightning checkpoint
        checkpoint = checkpoint['state_dict']
    for k, v in checkpoint.items():
        if not k.startswith(model_name):
            continue
        k = k[len(model_name)+1:]
        for prefix in prefixes_to_ignore:
            if k.startswith(prefix):
                print('ignore', k)
                break
        else:
            checkpoint_[k] = v
    return checkpoint_

def load_ckpt(model, ckpt_path, model_name='model', prefixes_to_ignore=[]):
    model_dict = model.state_dict()
    checkpoint_ = extract_model_state_dict(ckpt_path, model_name, prefixes_to_ignore)
    model_dict.update(checkpoint_)
    model.load_state_dict(model_dict)

Nerf ---------optimizer




import math
import torch
from torch.optim.optimizer import Optimizer, required
import itertools as it

class RAdam(Optimizer):

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        
        self.degenerated_to_sgd = degenerated_to_sgd
        if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict):
            for param in params:
                if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]):
                    param['buffer'] = [[None, None, None] for _ in range(10)]
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)])
        super(RAdam, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(RAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('RAdam does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state['step'] += 1
                buffered = group['buffer'][int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma

                    # more conservative since it's an approximated value
                    if N_sma >= 5:
                        step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    elif self.degenerated_to_sgd:
                        step_size = 1.0 / (1 - beta1 ** state['step'])
                    else:
                        step_size = -1
                    buffered[2] = step_size

                # more conservative since it's an approximated value
                if N_sma >= 5:
                    if group['weight_decay'] != 0:
                        p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
                    p.data.copy_(p_data_fp32)
                elif step_size > 0:
                    if group['weight_decay'] != 0:
                        p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                    p_data_fp32.add_(-step_size * group['lr'], exp_avg)
                    p.data.copy_(p_data_fp32)

        return loss

class PlainRAdam(Optimizer):

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
                    
        self.degenerated_to_sgd = degenerated_to_sgd
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)

        super(PlainRAdam, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(PlainRAdam, self).__setstate__(state)

    def step(self, closure=None):

        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('RAdam does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state['step'] += 1
                beta2_t = beta2 ** state['step']
                N_sma_max = 2 / (1 - beta2) - 1
                N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)


                # more conservative since it's an approximated value
                if N_sma >= 5:
                    if group['weight_decay'] != 0:
                        p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                    step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size, exp_avg, denom)
                    p.data.copy_(p_data_fp32)
                elif self.degenerated_to_sgd:
                    if group['weight_decay'] != 0:
                        p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
                    step_size = group['lr'] / (1 - beta1 ** state['step'])
                    p_data_fp32.add_(-step_size, exp_avg)
                    p.data.copy_(p_data_fp32)

        return loss

class AdamW(Optimizer):

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup = 0):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        
        defaults = dict(lr=lr, betas=betas, eps=eps,
                        weight_decay=weight_decay, warmup = warmup)
        super(AdamW, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(AdamW, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                p_data_fp32 = p.data.float()

                state = self.state[p]

                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)

                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                state['step'] += 1

                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                denom = exp_avg_sq.sqrt().add_(group['eps'])
                bias_correction1 = 1 - beta1 ** state['step']
                bias_correction2 = 1 - beta2 ** state['step']
                
                if group['warmup'] > state['step']:
                    scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup']
                else:
                    scheduled_lr = group['lr']

                step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1
                
                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32)

                p_data_fp32.addcdiv_(-step_size, exp_avg, denom)

                p.data.copy_(p_data_fp32)

        return loss


#Ranger deep learning optimizer - RAdam + Lookahead combined.
#https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer

#Ranger has now been used to capture 12 records on the FastAI leaderboard.

#This version = 9.3.19  

#Credits:
#RAdam -->  https://github.com/LiyuanLucasLiu/RAdam
#Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
#Lookahead paper --> MZhang,G Hinton  https://arxiv.org/abs/1907.08610

#summary of changes: 
#full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights), 
#supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
#changes 8/31/19 - fix references to *self*.N_sma_threshold; 
                #changed eps to 1e-5 as better default than 1e-8.


class Ranger(Optimizer):

    def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95, 0.999), eps=1e-5, weight_decay=0):
        #parameter checks
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        if not lr > 0:
            raise ValueError(f'Invalid Learning Rate: {lr}')
        if not eps > 0:
            raise ValueError(f'Invalid eps: {eps}')

        #parameter comments:
        # beta1 (momentum) of .95 seems to work better than .90...
        #N_sma_threshold of 5 seems better in testing than 4.
        #In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.

        #prep defaults and init torch.optim base
        defaults = dict(lr=lr, alpha=alpha, k=k, step_counter=0, betas=betas, N_sma_threshhold=N_sma_threshhold, eps=eps, weight_decay=weight_decay)
        super().__init__(params,defaults)

        #adjustable threshold
        self.N_sma_threshhold = N_sma_threshhold

        #now we can get to work...
        #removed as we now use step from RAdam...no need for duplicate step counting
        #for group in self.param_groups:
        #    group["step_counter"] = 0
            #print("group step counter init")

        #look ahead params
        self.alpha = alpha
        self.k = k 

        #radam buffer for state
        self.radam_buffer = [[None,None,None] for ind in range(10)]

        #self.first_run_check=0

        #lookahead weights
        #9/2/19 - lookahead param tensors have been moved to state storage.  
        #This should resolve issues with load/save where weights were left in GPU memory from first load, slowing down future runs.

        #self.slow_weights = [[p.clone().detach() for p in group['params']]
        #                     for group in self.param_groups]

        #don't use grad for lookahead weights
        #for w in it.chain(*self.slow_weights):
        #    w.requires_grad = False

    def __setstate__(self, state):
        print("set state called")
        super(Ranger, self).__setstate__(state)


    def step(self, closure=None):
        loss = None
        #note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.  
        #Uncomment if you need to use the actual closure...

        #if closure is not None:
            #loss = closure()

        #Evaluate averages and grad, update param tensors
        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()
                if grad.is_sparse:
                    raise RuntimeError('Ranger optimizer does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]  #get state dict for this param

                if len(state) == 0:   #if first time to run...init dictionary with our desired entries
                    #if self.first_run_check==0:
                        #self.first_run_check=1
                        #print("Initializing slow buffer...should not see this at load from saved model!")
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)

                    #look ahead weight storage now in state dict 
                    state['slow_buffer'] = torch.empty_like(p.data)
                    state['slow_buffer'].copy_(p.data)

                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32)

                #begin computations 
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                #compute variance mov avg
                exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                #compute mean moving avg
                exp_avg.mul_(beta1).add_(1 - beta1, grad)

                state['step'] += 1


                buffered = self.radam_buffer[int(state['step'] % 10)]
                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2 ** state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma
                    if N_sma > self.N_sma_threshhold:
                        step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step'])
                    else:
                        step_size = 1.0 / (1 - beta1 ** state['step'])
                    buffered[2] = step_size

                if group['weight_decay'] != 0:
                    p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)

                if N_sma > self.N_sma_threshhold:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom)
                else:
                    p_data_fp32.add_(-step_size * group['lr'], exp_avg)

                p.data.copy_(p_data_fp32)

                #integrated look ahead...
                #we do it at the param level instead of group level
                if state['step'] % group['k'] == 0:
                    slow_p = state['slow_buffer'] #get access to slow param tensor
                    slow_p.add_(self.alpha, p.data - slow_p)  #(fast weights - slow weights) * alpha
                    p.data.copy_(slow_p)  #copy interpolated weights to RAdam param tensor

        return loss

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/720921.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用P-One的全链路压测工具来定位问题节点和分析性能问题

首先&#xff0c;简单介绍一下&#xff0c;性能测试平台P-One。 PerformanceOne&#xff08;简称&#xff1a;P-One&#xff09;是泽众软件自主研发的一套一站式性能测试平台软件产品。 该产品采用 B/S 架构开发&#xff0c;实现了集管理、设计、压测、监控以及分析于一体的全方…

(06)ATF代码导读之BL31

代码导读 关于平台相关的代码和函数均以qemu实现解读。 BL31 在BL2中触发安全监控模式调用后会跳转到BL31中执行&#xff0c;同理复位的入口函数为bl31_entrypoint。BL31最主要的两个功能&#xff1a;作为启动流程&#xff0c;初始化硬件和加载BL32、BL31等&#xff1b;启动…

scratch 角色移动

scratch 角色移动 这是本人的第一个scratch程序。入坑scratch是因为希望体验一下图形化编程并制作以动画为主的图形化程序。用的软件是Mind。Mind是由scratch改编的开源IDE&#xff0c;可以图形化开发Arduino程序&#xff0c;本人使用Mind的另一个原因是Mind提供快捷地在OLED屏…

【数据库】MySQL安装(最新图文保姆级别超详细版本介绍)

1.总共两部分&#xff08;第二部可省略&#xff09; 安装mysql体验mysql环境变量配置 1.1安装mysql 1.输入官网地址https://www.mysql.com/ 下载完成后&#xff0c;我们双击打开我们的下载文件 打开后的界面&#xff0c;如图所示 我们选择custom&#xff0c;点击nex…

ModaHub魔搭社区:腾讯云向量数据库为什么以独立产品形式推出?

自今年大模型趋势发生以来&#xff0c;向量数据库领域备受关注。 今年3月以后&#xff0c;多家向量数据库厂商拿下最新融资&#xff0c;其中Pinecone更是获得高达1亿美元的B轮融资。 腾讯云当然也注意到了这一趋势。 腾讯云数据库副总经理罗云表示&#xff0c;当时内部已经开…

华为OD机试真题 Java 实现【网上商城优惠活动(一)】【2022 Q4 100分】,附详细解题思路

目录 一、题目描述二、输入描述三、输出描述四、补充说明五、Java算法源码六、效果展示1、输入2、输出3、说明 一、题目描述 某网上商城举办优惠活动&#xff0c;发布了满减、打折、无门槛3种优惠券&#xff0c;分别为&#xff1a; 1.每满100元优惠10元&#xff0c;无使用数限…

技术思维vs管理思维 程序员与项目经理5大思维差异

软件项目中&#xff0c;项目经理出身于程序员的情况较多&#xff0c;这样的项目经理在技术上拥有优势&#xff0c;但作为程序员的技术思维和作为项目经理的管理思维区别较大。因此如果不及时转换思维&#xff0c;往往造成过于纠结项目细节、忽视工期和成本压力&#xff0c;从而…

vmware虚拟机的12个使用技巧

1、增加虚拟机可用的物理内存 关闭虚拟机&#xff0c;设置内存&#xff1a; 2、硬件设备添加 一直选择下一步&#xff0c;直到这个界面进行磁盘大小分配&#xff1a; 3、控制权的切换 由于VMware的工作特点是在一台计算机中同时运行多个操作系统&#xff0c;因此这就存在一个…

排序算法-整理

1.【数据结构】带你玩转排序&#xff1a;堆排序、希尔排序、插入排序、选择排序、冒泡排序、快排(多版本)、归并排序 【数据结构】带你玩转排序&#xff1a;堆排序、希尔排序、插入排序、选择排序、冒泡排序、快排(多版本)、归并排序http://t.csdn.cn/fCXSo 2.十大基础算法 …

培训小程序首页开发

目录 1 定义变量2 欢迎语搭建3 分类导航搭建4 搭建底部导航总结 我们本篇来开发一下我们小程序的首页&#xff0c;先看一下原型 1 定义变量 因为我们首页展示的分类信息&#xff0c;现在分类信息已经存到了数据源里&#xff0c;我们要通过变量读取出来。 先打开我们创建的自…

Zabbix之部署

Zabbix 6.0 一.Zabbix介绍 1.zabbix 的含义 zabbix 是一个基于 Web 界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案zabbix 能监视各种网络参数&#xff0c;保证服务器系统的安全运营&#xff1b;并提供灵活的通知机制以让系统管理员快速定位/解决存在的各…

matlab用histfit画直方图+拟合曲线

matlab画直方图拟合曲线 成图效果1 数据格式2 绘制步骤3 后话 成图效果 1 数据格式 应该准备一个double的数组&#xff0c;如果是csv或者xlsx直接拖进matlab是table型&#xff0c;这是无法作为绘图参数的 如果是table型&#xff0c;可以使用table2array(data)进行转换 2 绘制…

广东程序员,今年28岁,4年经验月薪13K,仍一事无成

之前认识的一位工作很努力的广州程序员朋友&#xff0c;前天深夜微信拍了拍我——“在吗&#xff1f;播妞”。 他把对未来的迷茫一股脑的倒了出来&#xff1a; 对方拍了拍你的“隐形翅膀” 我在&#xff01; 长夜漫漫无心睡眠&#xff0c;我以为只有我睡不着觉&#xff0c;…

Unity 之 超级详细的隐私问题解决方案

Unity 之 助力游戏增长 -- 解决隐私问题 一&#xff0c;平台测试隐私问题二&#xff0c;解决方式一2.1 勾选自定义Mainifest2.2 修改自定义Mainifest2.3 隐私协议弹窗逻辑 三&#xff0c;解决方式二3.1 导出安卓工程3.2 创建上层Activity3.3 配置AndroidManifest 四&#xff0…

还在为PMO总结发愁?PMO工作总结应该怎么写及实例看这篇就够了

很多公司都要写总结了&#xff0c;作为PMO我们应该如何写工作总结呢&#xff1f;如何写总结能表现自己的价值还能让老板更喜欢看呢&#xff1f;过去一段时间的工作进行回顾总结&#xff0c;发掘问题、总结经验、进行规划等活动的过程。 今天分享给大家一个PMO写总结的方法和实…

Linux5.94 Zabbix服务配置与应用

文章目录 计算机系统5G云计算第四章 LINUX Zabbix服务配置与应用一、Zabbix服务概述1.zabbix 监控原理2.Zabbix 6.0 新特性1&#xff09;Zabbix server高可用防止硬件故障或计划维护期的停机2&#xff09;Zabbix 6.0 LTS新增Kubernetes监控功能&#xff0c;可以在Kubernetes系统…

PCB技巧(五)

一、问题及原因 问题&#xff1a; 对板子进行测试&#xff0c;发现引脚OPA电压不对&#xff0c;DAC输出电压没有问题&#xff0c;OPA接DAC输出应该和DAC电压大致差不多&#xff0c;但是电压差100mV。 原因&#xff1a; 经查找是下图中GND走线与旁边引脚OPO有接触。在未焊接…

香橙派刷机和系统登入

1.刷机 先打开刷机软件&#xff0c;再点击format&#xff0c;然后关闭 完成之后打开win32diskimager 选择映像文件后点击写入 等待写入 写入成功 2.登入香橙派 串口连接 默认登入账号密码为orangepi 密码不会显示

ChatGPT,你的智能助手,社交办公利器

ChatGPT&#xff0c;你的智能助手&#xff0c;社交办公利器&#xff01; 嗨&#xff0c;亲爱的小红书好友们&#xff01;我今天要向大家强力推荐一款让生活工作更轻松的神奇助手——ChatGPT&#xff01;无论是工作中的问题求解、日常生活的疑惑迷茫&#xff0c;还是灵感创作的启…

后台权限管理

1&#xff0c;页面级权限 通过后台接口控制页面级的权限&#xff0c;将数据保存在本地并且和路由匹配&#xff0c;左侧tabber 仅展示导航到拥有权限的页面。或者使用路由拦截的方式也可以。 2&#xff0c;按钮级权限 超级管理员有所有按钮的权限&#xff0c;普通管理员可能…